You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							154 lines
						
					
					
						
							5.3 KiB
						
					
					
				
			
		
		
	
	
							154 lines
						
					
					
						
							5.3 KiB
						
					
					
				import math
 | 
						|
import time
 | 
						|
import numpy as np
 | 
						|
 | 
						|
from collections import namedtuple
 | 
						|
from panda3d.core import Vec3
 | 
						|
from multiprocessing.connection import Connection
 | 
						|
 | 
						|
from metadrive.engine.core.engine_core import EngineCore
 | 
						|
from metadrive.engine.core.image_buffer import ImageBuffer
 | 
						|
from metadrive.envs.metadrive_env import MetaDriveEnv
 | 
						|
from metadrive.obs.image_obs import ImageObservation
 | 
						|
 | 
						|
from openpilot.common.realtime import Ratekeeper
 | 
						|
 | 
						|
from openpilot.tools.sim.lib.common import vec3
 | 
						|
from openpilot.tools.sim.lib.camerad import W, H
 | 
						|
 | 
						|
C3_POSITION = Vec3(0.0, 0, 1.22)
 | 
						|
C3_HPR = Vec3(0, 0,0)
 | 
						|
 | 
						|
 | 
						|
metadrive_simulation_state = namedtuple("metadrive_simulation_state", ["running", "done", "done_info"])
 | 
						|
metadrive_vehicle_state = namedtuple("metadrive_vehicle_state", ["velocity", "position", "bearing", "steering_angle"])
 | 
						|
 | 
						|
def apply_metadrive_patches(arrive_dest_done=True):
 | 
						|
  # By default, metadrive won't try to use cuda images unless it's used as a sensor for vehicles, so patch that in
 | 
						|
  def add_image_sensor_patched(self, name: str, cls, args):
 | 
						|
    if self.global_config["image_on_cuda"]:# and name == self.global_config["vehicle_config"]["image_source"]:
 | 
						|
        sensor = cls(*args, self, cuda=True)
 | 
						|
    else:
 | 
						|
        sensor = cls(*args, self, cuda=False)
 | 
						|
    assert isinstance(sensor, ImageBuffer), "This API is for adding image sensor"
 | 
						|
    self.sensors[name] = sensor
 | 
						|
 | 
						|
  EngineCore.add_image_sensor = add_image_sensor_patched
 | 
						|
 | 
						|
  # we aren't going to use the built-in observation stack, so disable it to save time
 | 
						|
  def observe_patched(self, *args, **kwargs):
 | 
						|
    return self.state
 | 
						|
 | 
						|
  ImageObservation.observe = observe_patched
 | 
						|
 | 
						|
  # disable destination, we want to loop forever
 | 
						|
  def arrive_destination_patch(self, *args, **kwargs):
 | 
						|
    return False
 | 
						|
 | 
						|
  if not arrive_dest_done:
 | 
						|
    MetaDriveEnv._is_arrive_destination = arrive_destination_patch
 | 
						|
 | 
						|
def metadrive_process(dual_camera: bool, config: dict, camera_array, wide_camera_array, image_lock,
 | 
						|
                      controls_recv: Connection, simulation_state_send: Connection, vehicle_state_send: Connection,
 | 
						|
                      exit_event, op_engaged, test_duration, test_run):
 | 
						|
  arrive_dest_done = config.pop("arrive_dest_done", True)
 | 
						|
  apply_metadrive_patches(arrive_dest_done)
 | 
						|
 | 
						|
  road_image = np.frombuffer(camera_array.get_obj(), dtype=np.uint8).reshape((H, W, 3))
 | 
						|
  if dual_camera:
 | 
						|
    assert wide_camera_array is not None
 | 
						|
    wide_road_image = np.frombuffer(wide_camera_array.get_obj(), dtype=np.uint8).reshape((H, W, 3))
 | 
						|
 | 
						|
  env = MetaDriveEnv(config)
 | 
						|
 | 
						|
  def get_current_lane_info(vehicle):
 | 
						|
    _, lane_info, on_lane = vehicle.navigation._get_current_lane(vehicle)
 | 
						|
    lane_idx = lane_info[2] if lane_info is not None else None
 | 
						|
    return lane_idx, on_lane
 | 
						|
 | 
						|
  def reset():
 | 
						|
    env.reset()
 | 
						|
    env.vehicle.config["max_speed_km_h"] = 1000
 | 
						|
    lane_idx_prev, _ = get_current_lane_info(env.vehicle)
 | 
						|
 | 
						|
    simulation_state = metadrive_simulation_state(
 | 
						|
      running=True,
 | 
						|
      done=False,
 | 
						|
      done_info=None,
 | 
						|
    )
 | 
						|
    simulation_state_send.send(simulation_state)
 | 
						|
 | 
						|
    return lane_idx_prev
 | 
						|
 | 
						|
  lane_idx_prev = reset()
 | 
						|
  start_time = None
 | 
						|
 | 
						|
  def get_cam_as_rgb(cam):
 | 
						|
    cam = env.engine.sensors[cam]
 | 
						|
    cam.get_cam().reparentTo(env.vehicle.origin)
 | 
						|
    cam.get_cam().setPos(C3_POSITION)
 | 
						|
    cam.get_cam().setHpr(C3_HPR)
 | 
						|
    img = cam.perceive(to_float=False)
 | 
						|
    if not isinstance(img, np.ndarray):
 | 
						|
      img = img.get() # convert cupy array to numpy
 | 
						|
    return img
 | 
						|
 | 
						|
  rk = Ratekeeper(100, None)
 | 
						|
 | 
						|
  steer_ratio = 8
 | 
						|
  vc = [0,0]
 | 
						|
 | 
						|
  while not exit_event.is_set():
 | 
						|
    vehicle_state = metadrive_vehicle_state(
 | 
						|
      velocity=vec3(x=float(env.vehicle.velocity[0]), y=float(env.vehicle.velocity[1]), z=0),
 | 
						|
      position=env.vehicle.position,
 | 
						|
      bearing=float(math.degrees(env.vehicle.heading_theta)),
 | 
						|
      steering_angle=env.vehicle.steering * env.vehicle.MAX_STEERING
 | 
						|
    )
 | 
						|
    vehicle_state_send.send(vehicle_state)
 | 
						|
 | 
						|
    if controls_recv.poll(0):
 | 
						|
      while controls_recv.poll(0):
 | 
						|
        steer_angle, gas, should_reset = controls_recv.recv()
 | 
						|
 | 
						|
      steer_metadrive = steer_angle * 1 / (env.vehicle.MAX_STEERING * steer_ratio)
 | 
						|
      steer_metadrive = np.clip(steer_metadrive, -1, 1)
 | 
						|
 | 
						|
      vc = [steer_metadrive, gas]
 | 
						|
 | 
						|
      if should_reset:
 | 
						|
        lane_idx_prev = reset()
 | 
						|
        start_time = None
 | 
						|
 | 
						|
    is_engaged = op_engaged.is_set()
 | 
						|
    if is_engaged and start_time is None:
 | 
						|
      start_time = time.monotonic()
 | 
						|
 | 
						|
    if rk.frame % 5 == 0:
 | 
						|
      _, _, terminated, _, _ = env.step(vc)
 | 
						|
      timeout = True if start_time is not None and time.monotonic() - start_time >= test_duration else False
 | 
						|
      lane_idx_curr, on_lane = get_current_lane_info(env.vehicle)
 | 
						|
      out_of_lane = lane_idx_curr != lane_idx_prev or not on_lane
 | 
						|
      lane_idx_prev = lane_idx_curr
 | 
						|
 | 
						|
      if terminated or ((out_of_lane or timeout) and test_run):
 | 
						|
        if terminated:
 | 
						|
          done_result = env.done_function("default_agent")
 | 
						|
        elif out_of_lane:
 | 
						|
          done_result = (True, {"out_of_lane" : True})
 | 
						|
        elif timeout:
 | 
						|
          done_result = (True, {"timeout" : True})
 | 
						|
 | 
						|
        simulation_state = metadrive_simulation_state(
 | 
						|
          running=False,
 | 
						|
          done=done_result[0],
 | 
						|
          done_info=done_result[1],
 | 
						|
        )
 | 
						|
        simulation_state_send.send(simulation_state)
 | 
						|
 | 
						|
      if dual_camera:
 | 
						|
        wide_road_image[...] = get_cam_as_rgb("rgb_wide")
 | 
						|
      road_image[...] = get_cam_as_rgb("rgb_road")
 | 
						|
      image_lock.release()
 | 
						|
 | 
						|
    rk.keep_time()
 | 
						|
 |