openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
 
 
 
 
 
 

130 lines
3.2 KiB

#! /usr/bin/env python
# type: ignore
import matplotlib.pyplot as plt
from selfdrive.controls.lib.lateral_mpc import libmpc_py
from selfdrive.controls.lib.drive_helpers import MPC_COST_LAT
import math
libmpc = libmpc_py.libmpc
libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE, MPC_COST_LAT.HEADING, 1.)
cur_state = libmpc_py.ffi.new("state_t *")
cur_state[0].x = 0.0
cur_state[0].y = 0.0
cur_state[0].psi = 0.0
cur_state[0].delta = 0.0
mpc_solution = libmpc_py.ffi.new("log_t *")
xx = []
yy = []
deltas = []
psis = []
times = []
curvature_factor = 0.3
v_ref = 1.0 * 20.12 # 45 mph
LANE_WIDTH = 3.7
p = [0.0, 0.0, 0.0, 0.0]
p_l = p[:]
p_l[3] += LANE_WIDTH / 2.0
p_r = p[:]
p_r[3] -= LANE_WIDTH / 2.0
l_poly = libmpc_py.ffi.new("double[4]", p_l)
r_poly = libmpc_py.ffi.new("double[4]", p_r)
p_poly = libmpc_py.ffi.new("double[4]", p)
l_prob = 1.0
r_prob = 1.0
p_prob = 1.0
for i in range(1):
cur_state[0].delta = math.radians(510. / 13.)
libmpc.run_mpc(cur_state, mpc_solution, l_poly, r_poly, p_poly, l_prob, r_prob,
curvature_factor, v_ref, LANE_WIDTH)
timesi = []
ct = 0
for i in range(21):
timesi.append(ct)
if i <= 4:
ct += 0.05
else:
ct += 0.15
xi = list(mpc_solution[0].x)
yi = list(mpc_solution[0].y)
psii = list(mpc_solution[0].psi)
deltai = list(mpc_solution[0].delta)
print("COST: ", mpc_solution[0].cost)
plt.figure(0)
plt.subplot(3, 1, 1)
plt.plot(timesi, psii)
plt.ylabel('psi')
plt.grid(True)
plt.subplot(3, 1, 2)
plt.plot(timesi, deltai)
plt.ylabel('delta')
plt.grid(True)
plt.subplot(3, 1, 3)
plt.plot(timesi, yi)
plt.ylabel('y')
plt.grid(True)
plt.show()
#### UNCOMMENT TO CHECK ITERATIVE SOLUTION
####
####for i in range(100):
#### libmpc.run_mpc(cur_state, mpc_solution, l_poly, r_poly, p_poly, l_prob, r_prob,
#### curvature_factor, v_ref, LANE_WIDTH)
#### print "x", list(mpc_solution[0].x)
#### print "y", list(mpc_solution[0].y)
#### print "delta", list(mpc_solution[0].delta)
#### print "psi", list(mpc_solution[0].psi)
#### # cur_state[0].x = mpc_solution[0].x[1]
#### # cur_state[0].y = mpc_solution[0].y[1]
#### # cur_state[0].psi = mpc_solution[0].psi[1]
#### cur_state[0].delta = radians(200 / 13.)#mpc_solution[0].delta[1]
####
#### xx.append(cur_state[0].x)
#### yy.append(cur_state[0].y)
#### psis.append(cur_state[0].psi)
#### deltas.append(cur_state[0].delta)
#### times.append(i * 0.05)
####
####
####def f(x):
#### return p_poly[0] * x**3 + p_poly[1] * x**2 + p_poly[2] * x + p_poly[3]
####
####
##### planned = map(f, xx)
##### plt.figure(1)
##### plt.plot(yy, xx, 'r-')
##### plt.plot(planned, xx, 'b--', linewidth=0.5)
##### plt.axes().set_aspect('equal', 'datalim')
##### plt.gca().invert_xaxis()
####
##### planned = map(f, map(float, list(mpc_solution[0].x)[1:]))
##### plt.figure(1)
##### plt.plot(map(float, list(mpc_solution[0].y)[1:]), map(float, list(mpc_solution[0].x)[1:]), 'r-')
##### plt.plot(planned, map(float, list(mpc_solution[0].x)[1:]), 'b--', linewidth=0.5)
##### plt.axes().set_aspect('equal', 'datalim')
##### plt.gca().invert_xaxis()
####
####plt.figure(2)
####plt.subplot(2, 1, 1)
####plt.plot(times, psis)
####plt.ylabel('psi')
####plt.subplot(2, 1, 2)
####plt.plot(times, deltas)
####plt.ylabel('delta')
####
####
####plt.show()