openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

407 lines
17 KiB

#include "selfdrive/modeld/models/driving.h"
#include <fcntl.h>
#include <unistd.h>
#include <cassert>
#include <cstring>
#include <eigen3/Eigen/Dense>
#include "common/clutil.h"
#include "common/params.h"
#include "common/timing.h"
#include "common/swaglog.h"
constexpr float FCW_THRESHOLD_5MS2_HIGH = 0.15;
constexpr float FCW_THRESHOLD_5MS2_LOW = 0.05;
constexpr float FCW_THRESHOLD_3MS2 = 0.7;
std::array<float, 5> prev_brake_5ms2_probs = {0,0,0,0,0};
std::array<float, 3> prev_brake_3ms2_probs = {0,0,0};
// #define DUMP_YUV
void model_init(ModelState* s, cl_device_id device_id, cl_context context) {
s->frame = new ModelFrame(device_id, context);
s->wide_frame = new ModelFrame(device_id, context);
#ifdef USE_THNEED
s->m = std::make_unique<ThneedModel>("models/supercombo.thneed",
#elif USE_ONNX_MODEL
s->m = std::make_unique<ONNXModel>("models/supercombo.onnx",
#else
s->m = std::make_unique<SNPEModel>("models/supercombo.dlc",
#endif
&s->output[0], NET_OUTPUT_SIZE, USE_GPU_RUNTIME, true, false, context);
#ifdef TEMPORAL
s->m->addRecurrent(&s->feature_buffer[0], TEMPORAL_SIZE);
#endif
#ifdef DESIRE
s->m->addDesire(s->pulse_desire, DESIRE_LEN*(HISTORY_BUFFER_LEN+1));
#endif
#ifdef TRAFFIC_CONVENTION
s->m->addTrafficConvention(s->traffic_convention, TRAFFIC_CONVENTION_LEN);
#endif
#ifdef DRIVING_STYLE
s->m->addDrivingStyle(s->driving_style, DRIVING_STYLE_LEN);
#endif
#ifdef NAV
s->m->addNavFeatures(s->nav_features, NAV_FEATURE_LEN);
#endif
}
ModelOutput* model_eval_frame(ModelState* s, VisionBuf* buf, VisionBuf* wbuf,
const mat3 &transform, const mat3 &transform_wide, float *desire_in, bool is_rhd, float *driving_style, float *nav_features, bool prepare_only) {
#ifdef DESIRE
std::memmove(&s->pulse_desire[0], &s->pulse_desire[DESIRE_LEN], sizeof(float) * DESIRE_LEN*HISTORY_BUFFER_LEN);
if (desire_in != NULL) {
for (int i = 1; i < DESIRE_LEN; i++) {
// Model decides when action is completed
// so desire input is just a pulse triggered on rising edge
if (desire_in[i] - s->prev_desire[i] > .99) {
s->pulse_desire[DESIRE_LEN*HISTORY_BUFFER_LEN+i] = desire_in[i];
} else {
s->pulse_desire[DESIRE_LEN*HISTORY_BUFFER_LEN+i] = 0.0;
}
s->prev_desire[i] = desire_in[i];
}
}
LOGT("Desire enqueued");
#endif
#ifdef NAV
std::memcpy(s->nav_features, nav_features, sizeof(float)*NAV_FEATURE_LEN);
#endif
#ifdef DRIVING_STYLE
std::memcpy(s->driving_style, driving_style, sizeof(float)*DRIVING_STYLE_LEN);
#endif
int rhd_idx = is_rhd;
s->traffic_convention[rhd_idx] = 1.0;
s->traffic_convention[1-rhd_idx] = 0.0;
// if getInputBuf is not NULL, net_input_buf will be
auto net_input_buf = s->frame->prepare(buf->buf_cl, buf->width, buf->height, buf->stride, buf->uv_offset, transform, static_cast<cl_mem*>(s->m->getInputBuf()));
s->m->addImage(net_input_buf, s->frame->buf_size);
LOGT("Image added");
if (wbuf != nullptr) {
auto net_extra_buf = s->wide_frame->prepare(wbuf->buf_cl, wbuf->width, wbuf->height, wbuf->stride, wbuf->uv_offset, transform_wide, static_cast<cl_mem*>(s->m->getExtraBuf()));
s->m->addExtra(net_extra_buf, s->wide_frame->buf_size);
LOGT("Extra image added");
}
if (prepare_only) {
return nullptr;
}
s->m->execute();
LOGT("Execution finished");
#ifdef TEMPORAL
std::memmove(&s->feature_buffer[0], &s->feature_buffer[FEATURE_LEN], sizeof(float) * FEATURE_LEN*(HISTORY_BUFFER_LEN-1));
std::memcpy(&s->feature_buffer[FEATURE_LEN*(HISTORY_BUFFER_LEN-1)], &s->output[OUTPUT_SIZE], sizeof(float) * FEATURE_LEN);
LOGT("Features enqueued");
#endif
return (ModelOutput*)&s->output;
}
void model_free(ModelState* s) {
delete s->frame;
delete s->wide_frame;
}
void fill_lead(cereal::ModelDataV2::LeadDataV3::Builder lead, const ModelOutputLeads &leads, int t_idx, float prob_t) {
std::array<float, LEAD_TRAJ_LEN> lead_t = {0.0, 2.0, 4.0, 6.0, 8.0, 10.0};
const auto &best_prediction = leads.get_best_prediction(t_idx);
lead.setProb(sigmoid(leads.prob[t_idx]));
lead.setProbTime(prob_t);
std::array<float, LEAD_TRAJ_LEN> lead_x, lead_y, lead_v, lead_a;
std::array<float, LEAD_TRAJ_LEN> lead_x_std, lead_y_std, lead_v_std, lead_a_std;
for (int i=0; i<LEAD_TRAJ_LEN; i++) {
lead_x[i] = best_prediction.mean[i].x;
lead_y[i] = best_prediction.mean[i].y;
lead_v[i] = best_prediction.mean[i].velocity;
lead_a[i] = best_prediction.mean[i].acceleration;
lead_x_std[i] = exp(best_prediction.std[i].x);
lead_y_std[i] = exp(best_prediction.std[i].y);
lead_v_std[i] = exp(best_prediction.std[i].velocity);
lead_a_std[i] = exp(best_prediction.std[i].acceleration);
}
lead.setT(to_kj_array_ptr(lead_t));
lead.setX(to_kj_array_ptr(lead_x));
lead.setY(to_kj_array_ptr(lead_y));
lead.setV(to_kj_array_ptr(lead_v));
lead.setA(to_kj_array_ptr(lead_a));
lead.setXStd(to_kj_array_ptr(lead_x_std));
lead.setYStd(to_kj_array_ptr(lead_y_std));
lead.setVStd(to_kj_array_ptr(lead_v_std));
lead.setAStd(to_kj_array_ptr(lead_a_std));
}
void fill_meta(cereal::ModelDataV2::MetaData::Builder meta, const ModelOutputMeta &meta_data) {
std::array<float, DESIRE_LEN> desire_state_softmax;
softmax(meta_data.desire_state_prob.array.data(), desire_state_softmax.data(), DESIRE_LEN);
std::array<float, DESIRE_PRED_LEN * DESIRE_LEN> desire_pred_softmax;
for (int i=0; i<DESIRE_PRED_LEN; i++) {
softmax(meta_data.desire_pred_prob[i].array.data(), desire_pred_softmax.data() + (i * DESIRE_LEN), DESIRE_LEN);
}
std::array<float, DISENGAGE_LEN> lat_long_t = {2,4,6,8,10};
std::array<float, DISENGAGE_LEN> gas_disengage_sigmoid, brake_disengage_sigmoid, steer_override_sigmoid,
brake_3ms2_sigmoid, brake_4ms2_sigmoid, brake_5ms2_sigmoid;
for (int i=0; i<DISENGAGE_LEN; i++) {
gas_disengage_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].gas_disengage);
brake_disengage_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].brake_disengage);
steer_override_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].steer_override);
brake_3ms2_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].brake_3ms2);
brake_4ms2_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].brake_4ms2);
brake_5ms2_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].brake_5ms2);
//gas_pressed_sigmoid[i] = sigmoid(meta_data.disengage_prob[i].gas_pressed);
}
std::memmove(prev_brake_5ms2_probs.data(), &prev_brake_5ms2_probs[1], 4*sizeof(float));
std::memmove(prev_brake_3ms2_probs.data(), &prev_brake_3ms2_probs[1], 2*sizeof(float));
prev_brake_5ms2_probs[4] = brake_5ms2_sigmoid[0];
prev_brake_3ms2_probs[2] = brake_3ms2_sigmoid[0];
bool above_fcw_threshold = true;
for (int i=0; i<prev_brake_5ms2_probs.size(); i++) {
float threshold = i < 2 ? FCW_THRESHOLD_5MS2_LOW : FCW_THRESHOLD_5MS2_HIGH;
above_fcw_threshold = above_fcw_threshold && prev_brake_5ms2_probs[i] > threshold;
}
for (int i=0; i<prev_brake_3ms2_probs.size(); i++) {
above_fcw_threshold = above_fcw_threshold && prev_brake_3ms2_probs[i] > FCW_THRESHOLD_3MS2;
}
auto disengage = meta.initDisengagePredictions();
disengage.setT(to_kj_array_ptr(lat_long_t));
disengage.setGasDisengageProbs(to_kj_array_ptr(gas_disengage_sigmoid));
disengage.setBrakeDisengageProbs(to_kj_array_ptr(brake_disengage_sigmoid));
disengage.setSteerOverrideProbs(to_kj_array_ptr(steer_override_sigmoid));
disengage.setBrake3MetersPerSecondSquaredProbs(to_kj_array_ptr(brake_3ms2_sigmoid));
disengage.setBrake4MetersPerSecondSquaredProbs(to_kj_array_ptr(brake_4ms2_sigmoid));
disengage.setBrake5MetersPerSecondSquaredProbs(to_kj_array_ptr(brake_5ms2_sigmoid));
meta.setEngagedProb(sigmoid(meta_data.engaged_prob));
meta.setDesirePrediction(to_kj_array_ptr(desire_pred_softmax));
meta.setDesireState(to_kj_array_ptr(desire_state_softmax));
meta.setHardBrakePredicted(above_fcw_threshold);
}
template<size_t size>
void fill_xyzt(cereal::XYZTData::Builder xyzt, const std::array<float, size> &t,
const std::array<float, size> &x, const std::array<float, size> &y, const std::array<float, size> &z) {
xyzt.setT(to_kj_array_ptr(t));
xyzt.setX(to_kj_array_ptr(x));
xyzt.setY(to_kj_array_ptr(y));
xyzt.setZ(to_kj_array_ptr(z));
}
template<size_t size>
void fill_xyzt(cereal::XYZTData::Builder xyzt, const std::array<float, size> &t,
const std::array<float, size> &x, const std::array<float, size> &y, const std::array<float, size> &z,
const std::array<float, size> &x_std, const std::array<float, size> &y_std, const std::array<float, size> &z_std) {
fill_xyzt(xyzt, t, x, y, z);
xyzt.setXStd(to_kj_array_ptr(x_std));
xyzt.setYStd(to_kj_array_ptr(y_std));
xyzt.setZStd(to_kj_array_ptr(z_std));
}
void fill_plan(cereal::ModelDataV2::Builder &framed, const ModelOutputPlanPrediction &plan) {
std::array<float, TRAJECTORY_SIZE> pos_x, pos_y, pos_z;
std::array<float, TRAJECTORY_SIZE> pos_x_std, pos_y_std, pos_z_std;
std::array<float, TRAJECTORY_SIZE> vel_x, vel_y, vel_z;
std::array<float, TRAJECTORY_SIZE> rot_x, rot_y, rot_z;
std::array<float, TRAJECTORY_SIZE> acc_x, acc_y, acc_z;
std::array<float, TRAJECTORY_SIZE> rot_rate_x, rot_rate_y, rot_rate_z;
for(int i=0; i<TRAJECTORY_SIZE; i++) {
pos_x[i] = plan.mean[i].position.x;
pos_y[i] = plan.mean[i].position.y;
pos_z[i] = plan.mean[i].position.z;
pos_x_std[i] = exp(plan.std[i].position.x);
pos_y_std[i] = exp(plan.std[i].position.y);
pos_z_std[i] = exp(plan.std[i].position.z);
vel_x[i] = plan.mean[i].velocity.x;
vel_y[i] = plan.mean[i].velocity.y;
vel_z[i] = plan.mean[i].velocity.z;
acc_x[i] = plan.mean[i].acceleration.x;
acc_y[i] = plan.mean[i].acceleration.y;
acc_z[i] = plan.mean[i].acceleration.z;
rot_x[i] = plan.mean[i].rotation.x;
rot_y[i] = plan.mean[i].rotation.y;
rot_z[i] = plan.mean[i].rotation.z;
rot_rate_x[i] = plan.mean[i].rotation_rate.x;
rot_rate_y[i] = plan.mean[i].rotation_rate.y;
rot_rate_z[i] = plan.mean[i].rotation_rate.z;
}
fill_xyzt(framed.initPosition(), T_IDXS_FLOAT, pos_x, pos_y, pos_z, pos_x_std, pos_y_std, pos_z_std);
fill_xyzt(framed.initVelocity(), T_IDXS_FLOAT, vel_x, vel_y, vel_z);
fill_xyzt(framed.initAcceleration(), T_IDXS_FLOAT, acc_x, acc_y, acc_z);
fill_xyzt(framed.initOrientation(), T_IDXS_FLOAT, rot_x, rot_y, rot_z);
fill_xyzt(framed.initOrientationRate(), T_IDXS_FLOAT, rot_rate_x, rot_rate_y, rot_rate_z);
}
void fill_lane_lines(cereal::ModelDataV2::Builder &framed, const std::array<float, TRAJECTORY_SIZE> &plan_t,
const ModelOutputLaneLines &lanes) {
std::array<float, TRAJECTORY_SIZE> left_far_y, left_far_z;
std::array<float, TRAJECTORY_SIZE> left_near_y, left_near_z;
std::array<float, TRAJECTORY_SIZE> right_near_y, right_near_z;
std::array<float, TRAJECTORY_SIZE> right_far_y, right_far_z;
for (int j=0; j<TRAJECTORY_SIZE; j++) {
left_far_y[j] = lanes.mean.left_far[j].y;
left_far_z[j] = lanes.mean.left_far[j].z;
left_near_y[j] = lanes.mean.left_near[j].y;
left_near_z[j] = lanes.mean.left_near[j].z;
right_near_y[j] = lanes.mean.right_near[j].y;
right_near_z[j] = lanes.mean.right_near[j].z;
right_far_y[j] = lanes.mean.right_far[j].y;
right_far_z[j] = lanes.mean.right_far[j].z;
}
auto lane_lines = framed.initLaneLines(4);
fill_xyzt(lane_lines[0], plan_t, X_IDXS_FLOAT, left_far_y, left_far_z);
fill_xyzt(lane_lines[1], plan_t, X_IDXS_FLOAT, left_near_y, left_near_z);
fill_xyzt(lane_lines[2], plan_t, X_IDXS_FLOAT, right_near_y, right_near_z);
fill_xyzt(lane_lines[3], plan_t, X_IDXS_FLOAT, right_far_y, right_far_z);
framed.setLaneLineStds({
exp(lanes.std.left_far[0].y),
exp(lanes.std.left_near[0].y),
exp(lanes.std.right_near[0].y),
exp(lanes.std.right_far[0].y),
});
framed.setLaneLineProbs({
sigmoid(lanes.prob.left_far.val),
sigmoid(lanes.prob.left_near.val),
sigmoid(lanes.prob.right_near.val),
sigmoid(lanes.prob.right_far.val),
});
}
void fill_road_edges(cereal::ModelDataV2::Builder &framed, const std::array<float, TRAJECTORY_SIZE> &plan_t,
const ModelOutputRoadEdges &edges) {
std::array<float, TRAJECTORY_SIZE> left_y, left_z;
std::array<float, TRAJECTORY_SIZE> right_y, right_z;
for (int j=0; j<TRAJECTORY_SIZE; j++) {
left_y[j] = edges.mean.left[j].y;
left_z[j] = edges.mean.left[j].z;
right_y[j] = edges.mean.right[j].y;
right_z[j] = edges.mean.right[j].z;
}
auto road_edges = framed.initRoadEdges(2);
fill_xyzt(road_edges[0], plan_t, X_IDXS_FLOAT, left_y, left_z);
fill_xyzt(road_edges[1], plan_t, X_IDXS_FLOAT, right_y, right_z);
framed.setRoadEdgeStds({
exp(edges.std.left[0].y),
exp(edges.std.right[0].y),
});
}
void fill_model(cereal::ModelDataV2::Builder &framed, const ModelOutput &net_outputs) {
const auto &best_plan = net_outputs.plans.get_best_prediction();
std::array<float, TRAJECTORY_SIZE> plan_t;
std::fill_n(plan_t.data(), plan_t.size(), NAN);
plan_t[0] = 0.0;
for (int xidx=1, tidx=0; xidx<TRAJECTORY_SIZE; xidx++) {
// increment tidx until we find an element that's further away than the current xidx
for (int next_tid = tidx + 1; next_tid < TRAJECTORY_SIZE && best_plan.mean[next_tid].position.x < X_IDXS[xidx]; next_tid++) {
tidx++;
}
if (tidx == TRAJECTORY_SIZE - 1) {
// if the Plan doesn't extend far enough, set plan_t to the max value (10s), then break
plan_t[xidx] = T_IDXS[TRAJECTORY_SIZE - 1];
break;
}
// interpolate to find `t` for the current xidx
float current_x_val = best_plan.mean[tidx].position.x;
float next_x_val = best_plan.mean[tidx+1].position.x;
float p = (X_IDXS[xidx] - current_x_val) / (next_x_val - current_x_val);
plan_t[xidx] = p * T_IDXS[tidx+1] + (1 - p) * T_IDXS[tidx];
}
fill_plan(framed, best_plan);
fill_lane_lines(framed, plan_t, net_outputs.lane_lines);
fill_road_edges(framed, plan_t, net_outputs.road_edges);
// meta
fill_meta(framed.initMeta(), net_outputs.meta);
// leads
auto leads = framed.initLeadsV3(LEAD_MHP_SELECTION);
std::array<float, LEAD_MHP_SELECTION> t_offsets = {0.0, 2.0, 4.0};
for (int i=0; i<LEAD_MHP_SELECTION; i++) {
fill_lead(leads[i], net_outputs.leads, i, t_offsets[i]);
}
// temporal pose
const auto &v_mean = net_outputs.temporal_pose.velocity_mean;
const auto &r_mean = net_outputs.temporal_pose.rotation_mean;
const auto &v_std = net_outputs.temporal_pose.velocity_std;
const auto &r_std = net_outputs.temporal_pose.rotation_std;
auto temporal_pose = framed.initTemporalPose();
temporal_pose.setTrans({v_mean.x, v_mean.y, v_mean.z});
temporal_pose.setRot({r_mean.x, r_mean.y, r_mean.z});
temporal_pose.setTransStd({exp(v_std.x), exp(v_std.y), exp(v_std.z)});
temporal_pose.setRotStd({exp(r_std.x), exp(r_std.y), exp(r_std.z)});
}
void model_publish(PubMaster &pm, uint32_t vipc_frame_id, uint32_t vipc_frame_id_extra, uint32_t frame_id, float frame_drop,
const ModelOutput &net_outputs, uint64_t timestamp_eof,
float model_execution_time, kj::ArrayPtr<const float> raw_pred, const bool valid) {
const uint32_t frame_age = (frame_id > vipc_frame_id) ? (frame_id - vipc_frame_id) : 0;
MessageBuilder msg;
auto framed = msg.initEvent(valid).initModelV2();
framed.setFrameId(vipc_frame_id);
framed.setFrameIdExtra(vipc_frame_id_extra);
framed.setFrameAge(frame_age);
framed.setFrameDropPerc(frame_drop * 100);
framed.setTimestampEof(timestamp_eof);
framed.setModelExecutionTime(model_execution_time);
if (send_raw_pred) {
framed.setRawPredictions(raw_pred.asBytes());
}
fill_model(framed, net_outputs);
pm.send("modelV2", msg);
}
void posenet_publish(PubMaster &pm, uint32_t vipc_frame_id, uint32_t vipc_dropped_frames,
const ModelOutput &net_outputs, uint64_t timestamp_eof, const bool valid) {
MessageBuilder msg;
const auto &v_mean = net_outputs.pose.velocity_mean;
const auto &r_mean = net_outputs.pose.rotation_mean;
const auto &t_mean = net_outputs.wide_from_device_euler.mean;
const auto &v_std = net_outputs.pose.velocity_std;
const auto &r_std = net_outputs.pose.rotation_std;
const auto &t_std = net_outputs.wide_from_device_euler.std;
auto posenetd = msg.initEvent(valid && (vipc_dropped_frames < 1)).initCameraOdometry();
posenetd.setTrans({v_mean.x, v_mean.y, v_mean.z});
posenetd.setRot({r_mean.x, r_mean.y, r_mean.z});
posenetd.setWideFromDeviceEuler({t_mean.x, t_mean.y, t_mean.z});
posenetd.setTransStd({exp(v_std.x), exp(v_std.y), exp(v_std.z)});
posenetd.setRotStd({exp(r_std.x), exp(r_std.y), exp(r_std.z)});
posenetd.setWideFromDeviceEulerStd({exp(t_std.x), exp(t_std.y), exp(t_std.z)});
posenetd.setTimestampEof(timestamp_eof);
posenetd.setFrameId(vipc_frame_id);
pm.send("cameraOdometry", msg);
}