You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							707 lines
						
					
					
						
							29 KiB
						
					
					
				
			
		
		
	
	
							707 lines
						
					
					
						
							29 KiB
						
					
					
				| # -*- coding: future_fstrings -*-
 | |
| #
 | |
| # Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren,
 | |
| # Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor,
 | |
| # Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan,
 | |
| # Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl
 | |
| #
 | |
| # This file is part of acados.
 | |
| #
 | |
| # The 2-Clause BSD License
 | |
| #
 | |
| # Redistribution and use in source and binary forms, with or without
 | |
| # modification, are permitted provided that the following conditions are met:
 | |
| #
 | |
| # 1. Redistributions of source code must retain the above copyright notice,
 | |
| # this list of conditions and the following disclaimer.
 | |
| #
 | |
| # 2. Redistributions in binary form must reproduce the above copyright notice,
 | |
| # this list of conditions and the following disclaimer in the documentation
 | |
| # and/or other materials provided with the distribution.
 | |
| #
 | |
| # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
| # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
| # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
| # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 | |
| # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
| # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
| # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | |
| # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | |
| # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
| # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
| # POSSIBILITY OF SUCH DAMAGE.;
 | |
| #
 | |
| # cython: language_level=3
 | |
| # cython: profile=False
 | |
| # distutils: language=c
 | |
| 
 | |
| cimport cython
 | |
| from libc cimport string
 | |
| 
 | |
| cimport acados_solver_common
 | |
| # TODO: make this import more clear? it is not a general solver, but problem specific.
 | |
| cimport acados_solver
 | |
| 
 | |
| cimport numpy as cnp
 | |
| 
 | |
| import os
 | |
| from datetime import datetime
 | |
| import numpy as np
 | |
| 
 | |
| 
 | |
| cdef class AcadosOcpSolverCython:
 | |
|     """
 | |
|     Class to interact with the acados ocp solver C object.
 | |
|     """
 | |
| 
 | |
|     cdef acados_solver.nlp_solver_capsule *capsule
 | |
|     cdef void *nlp_opts
 | |
|     cdef acados_solver_common.ocp_nlp_dims *nlp_dims
 | |
|     cdef acados_solver_common.ocp_nlp_config *nlp_config
 | |
|     cdef acados_solver_common.ocp_nlp_out *nlp_out
 | |
|     cdef acados_solver_common.ocp_nlp_out *sens_out
 | |
|     cdef acados_solver_common.ocp_nlp_in *nlp_in
 | |
|     cdef acados_solver_common.ocp_nlp_solver *nlp_solver
 | |
| 
 | |
|     cdef int status
 | |
|     cdef bint solver_created
 | |
| 
 | |
|     cdef str model_name
 | |
|     cdef int N
 | |
| 
 | |
|     cdef str nlp_solver_type
 | |
| 
 | |
|     def __cinit__(self, model_name, nlp_solver_type, N):
 | |
| 
 | |
|         self.solver_created = False
 | |
| 
 | |
|         self.N = N
 | |
|         self.model_name = model_name
 | |
|         self.nlp_solver_type = nlp_solver_type
 | |
| 
 | |
|         # create capsule
 | |
|         self.capsule = acados_solver.acados_create_capsule()
 | |
| 
 | |
|         # create solver
 | |
|         assert acados_solver.acados_create(self.capsule) == 0
 | |
|         self.solver_created = True
 | |
| 
 | |
|         # get pointers solver
 | |
|         self.__get_pointers_solver()
 | |
|         self.status = 0
 | |
| 
 | |
| 
 | |
|     def __get_pointers_solver(self):
 | |
|         """
 | |
|         Private function to get the pointers for solver
 | |
|         """
 | |
|         # get pointers solver
 | |
|         self.nlp_opts = acados_solver.acados_get_nlp_opts(self.capsule)
 | |
|         self.nlp_dims = acados_solver.acados_get_nlp_dims(self.capsule)
 | |
|         self.nlp_config = acados_solver.acados_get_nlp_config(self.capsule)
 | |
|         self.nlp_out = acados_solver.acados_get_nlp_out(self.capsule)
 | |
|         self.sens_out = acados_solver.acados_get_sens_out(self.capsule)
 | |
|         self.nlp_in = acados_solver.acados_get_nlp_in(self.capsule)
 | |
|         self.nlp_solver = acados_solver.acados_get_nlp_solver(self.capsule)
 | |
| 
 | |
| 
 | |
|     def solve(self):
 | |
|         """
 | |
|         Solve the ocp with current input.
 | |
|         """
 | |
|         return acados_solver.acados_solve(self.capsule)
 | |
| 
 | |
| 
 | |
|     def reset(self):
 | |
|         """
 | |
|         Sets current iterate to all zeros.
 | |
|         """
 | |
|         return acados_solver.acados_reset(self.capsule)
 | |
| 
 | |
| 
 | |
|     def set_new_time_steps(self, new_time_steps):
 | |
|         """
 | |
|         Set new time steps.
 | |
|         Recreates the solver if N changes.
 | |
| 
 | |
|             :param new_time_steps: 1 dimensional np array of new time steps for the solver
 | |
| 
 | |
|             .. note:: This allows for different use-cases: either set a new size of time-steps or a new distribution of
 | |
|                       the shooting nodes without changing the number, e.g., to reach a different final time. Both cases
 | |
|                       do not require a new code export and compilation.
 | |
|         """
 | |
| 
 | |
|         raise NotImplementedError("AcadosOcpSolverCython: does not support set_new_time_steps() since it is only a prototyping feature")
 | |
|         # # unlikely but still possible
 | |
|         # if not self.solver_created:
 | |
|         #     raise Exception('Solver was not yet created!')
 | |
| 
 | |
|         # ## check if time steps really changed in value
 | |
|         # # get time steps
 | |
|         # cdef cnp.ndarray[cnp.float64_t, ndim=1] old_time_steps = np.ascontiguousarray(np.zeros((self.N,)), dtype=np.float64)
 | |
|         # assert acados_solver.acados_get_time_steps(self.capsule, self.N, <double *> old_time_steps.data)
 | |
| 
 | |
|         # if np.array_equal(old_time_steps, new_time_steps):
 | |
|         #     return
 | |
| 
 | |
|         # N = new_time_steps.size
 | |
|         # cdef cnp.ndarray[cnp.float64_t, ndim=1] value = np.ascontiguousarray(new_time_steps, dtype=np.float64)
 | |
| 
 | |
|         # # check if recreation of acados is necessary (no need to recreate acados if sizes are identical)
 | |
|         # if len(old_time_steps) == N:
 | |
|         #     assert acados_solver.acados_update_time_steps(self.capsule, N, <double *> value.data) == 0
 | |
| 
 | |
|         # else:  # recreate the solver with the new time steps
 | |
|         #     self.solver_created = False
 | |
| 
 | |
|         #     # delete old memory (analog to __del__)
 | |
|         #     acados_solver.acados_free(self.capsule)
 | |
| 
 | |
|         #     # create solver with new time steps
 | |
|         #     assert acados_solver.acados_create_with_discretization(self.capsule, N, <double *> value.data) == 0
 | |
| 
 | |
|         #     self.solver_created = True
 | |
| 
 | |
|         #     # get pointers solver
 | |
|         #     self.__get_pointers_solver()
 | |
| 
 | |
|         # # store time_steps, N
 | |
|         # self.time_steps = new_time_steps
 | |
|         # self.N = N
 | |
| 
 | |
| 
 | |
|     def update_qp_solver_cond_N(self, qp_solver_cond_N: int):
 | |
|         """
 | |
|         Recreate solver with new value `qp_solver_cond_N` with a partial condensing QP solver.
 | |
|         This function is relevant for code reuse, i.e., if either `set_new_time_steps(...)` is used or
 | |
|         the influence of a different `qp_solver_cond_N` is studied without code export and compilation.
 | |
|             :param qp_solver_cond_N: new number of condensing stages for the solver
 | |
| 
 | |
|             .. note:: This function can only be used in combination with a partial condensing QP solver.
 | |
| 
 | |
|             .. note:: After `set_new_time_steps(...)` is used and depending on the new number of time steps it might be
 | |
|                       necessary to change `qp_solver_cond_N` as well (using this function), i.e., typically
 | |
|                       `qp_solver_cond_N < N`.
 | |
|         """
 | |
|         raise NotImplementedError("AcadosOcpSolverCython: does not support update_qp_solver_cond_N() since it is only a prototyping feature")
 | |
| 
 | |
|         # # unlikely but still possible
 | |
|         # if not self.solver_created:
 | |
|         #     raise Exception('Solver was not yet created!')
 | |
|         # if self.N < qp_solver_cond_N:
 | |
|         #     raise Exception('Setting qp_solver_cond_N to be larger than N does not work!')
 | |
|         # if self.qp_solver_cond_N != qp_solver_cond_N:
 | |
|         #     self.solver_created = False
 | |
| 
 | |
|         #     # recreate the solver
 | |
|         #     acados_solver.acados_update_qp_solver_cond_N(self.capsule, qp_solver_cond_N)
 | |
| 
 | |
|         #     # store the new value
 | |
|         #     self.qp_solver_cond_N = qp_solver_cond_N
 | |
|         #     self.solver_created = True
 | |
| 
 | |
|         #     # get pointers solver
 | |
|         #     self.__get_pointers_solver()
 | |
| 
 | |
| 
 | |
|     def eval_param_sens(self, index, stage=0, field="ex"):
 | |
|         """
 | |
|         Calculate the sensitivity of the curent solution with respect to the initial state component of index
 | |
| 
 | |
|             :param index: integer corresponding to initial state index in range(nx)
 | |
|         """
 | |
| 
 | |
|         field_ = field
 | |
|         field = field_.encode('utf-8')
 | |
| 
 | |
|         # checks
 | |
|         if not isinstance(index, int):
 | |
|             raise Exception('AcadosOcpSolverCython.eval_param_sens(): index must be Integer.')
 | |
| 
 | |
|         cdef int nx = acados_solver_common.ocp_nlp_dims_get_from_attr(self.nlp_config, self.nlp_dims, self.nlp_out, 0, "x".encode('utf-8'))
 | |
| 
 | |
|         if index < 0 or index > nx:
 | |
|             raise Exception(f'AcadosOcpSolverCython.eval_param_sens(): index must be in [0, nx-1], got: {index}.')
 | |
| 
 | |
|         # actual eval_param
 | |
|         acados_solver_common.ocp_nlp_eval_param_sens(self.nlp_solver, field, stage, index, self.sens_out)
 | |
| 
 | |
|         return
 | |
| 
 | |
| 
 | |
|     def get(self, int stage, str field_):
 | |
|         """
 | |
|         Get the last solution of the solver:
 | |
| 
 | |
|             :param stage: integer corresponding to shooting node
 | |
|             :param field: string in ['x', 'u', 'z', 'pi', 'lam', 't', 'sl', 'su',]
 | |
| 
 | |
|             .. note:: regarding lam, t: \n
 | |
|                     the inequalities are internally organized in the following order: \n
 | |
|                     [ lbu lbx lg lh lphi ubu ubx ug uh uphi; \n
 | |
|                       lsbu lsbx lsg lsh lsphi usbu usbx usg ush usphi]
 | |
| 
 | |
|             .. note:: pi: multipliers for dynamics equality constraints \n
 | |
|                       lam: multipliers for inequalities \n
 | |
|                       t: slack variables corresponding to evaluation of all inequalities (at the solution) \n
 | |
|                       sl: slack variables of soft lower inequality constraints \n
 | |
|                       su: slack variables of soft upper inequality constraints \n
 | |
|         """
 | |
| 
 | |
|         out_fields = ['x', 'u', 'z', 'pi', 'lam', 't', 'sl', 'su']
 | |
|         field = field_.encode('utf-8')
 | |
| 
 | |
|         if field_ not in out_fields:
 | |
|             raise Exception('AcadosOcpSolverCython.get(): {} is an invalid argument.\
 | |
|                     \n Possible values are {}. Exiting.'.format(field_, out_fields))
 | |
| 
 | |
|         if stage < 0 or stage > self.N:
 | |
|             raise Exception('AcadosOcpSolverCython.get(): stage index must be in [0, N], got: {}.'.format(self.N))
 | |
| 
 | |
|         if stage == self.N and field_ == 'pi':
 | |
|             raise Exception('AcadosOcpSolverCython.get(): field {} does not exist at final stage {}.'\
 | |
|                 .format(field_, stage))
 | |
| 
 | |
|         cdef int dims = acados_solver_common.ocp_nlp_dims_get_from_attr(self.nlp_config,
 | |
|             self.nlp_dims, self.nlp_out, stage, field)
 | |
| 
 | |
|         cdef cnp.ndarray[cnp.float64_t, ndim=1] out = np.zeros((dims,))
 | |
|         acados_solver_common.ocp_nlp_out_get(self.nlp_config, \
 | |
|             self.nlp_dims, self.nlp_out, stage, field, <void *> out.data)
 | |
| 
 | |
|         return out
 | |
| 
 | |
| 
 | |
|     def print_statistics(self):
 | |
|         """
 | |
|         prints statistics of previous solver run as a table:
 | |
|             - iter: iteration number
 | |
|             - res_stat: stationarity residual
 | |
|             - res_eq: residual wrt equality constraints (dynamics)
 | |
|             - res_ineq: residual wrt inequality constraints (constraints)
 | |
|             - res_comp: residual wrt complementarity conditions
 | |
|             - qp_stat: status of QP solver
 | |
|             - qp_iter: number of QP iterations
 | |
|             - qp_res_stat: stationarity residual of the last QP solution
 | |
|             - qp_res_eq: residual wrt equality constraints (dynamics) of the last QP solution
 | |
|             - qp_res_ineq: residual wrt inequality constraints (constraints)  of the last QP solution
 | |
|             - qp_res_comp: residual wrt complementarity conditions of the last QP solution
 | |
|         """
 | |
|         acados_solver.acados_print_stats(self.capsule)
 | |
| 
 | |
| 
 | |
|     def store_iterate(self, filename='', overwrite=False):
 | |
|         """
 | |
|         Stores the current iterate of the ocp solver in a json file.
 | |
| 
 | |
|             :param filename: if not set, use model_name + timestamp + '.json'
 | |
|             :param overwrite: if false and filename exists add timestamp to filename
 | |
|         """
 | |
|         import json
 | |
|         if filename == '':
 | |
|             filename += self.model_name + '_' + 'iterate' + '.json'
 | |
| 
 | |
|         if not overwrite:
 | |
|             # append timestamp
 | |
|             if os.path.isfile(filename):
 | |
|                 filename = filename[:-5]
 | |
|                 filename += datetime.utcnow().strftime('%Y-%m-%d-%H:%M:%S.%f') + '.json'
 | |
| 
 | |
|         # get iterate:
 | |
|         solution = dict()
 | |
| 
 | |
|         for i in range(self.N+1):
 | |
|             solution['x_'+str(i)] = self.get(i,'x')
 | |
|             solution['u_'+str(i)] = self.get(i,'u')
 | |
|             solution['z_'+str(i)] = self.get(i,'z')
 | |
|             solution['lam_'+str(i)] = self.get(i,'lam')
 | |
|             solution['t_'+str(i)] = self.get(i, 't')
 | |
|             solution['sl_'+str(i)] = self.get(i, 'sl')
 | |
|             solution['su_'+str(i)] = self.get(i, 'su')
 | |
|         for i in range(self.N):
 | |
|             solution['pi_'+str(i)] = self.get(i,'pi')
 | |
| 
 | |
|         # save
 | |
|         with open(filename, 'w') as f:
 | |
|             json.dump(solution, f, default=lambda x: x.tolist(), indent=4, sort_keys=True)
 | |
|         print("stored current iterate in ", os.path.join(os.getcwd(), filename))
 | |
| 
 | |
| 
 | |
|     def load_iterate(self, filename):
 | |
|         """
 | |
|         Loads the iterate stored in json file with filename into the ocp solver.
 | |
|         """
 | |
|         import json
 | |
|         if not os.path.isfile(filename):
 | |
|             raise Exception('load_iterate: failed, file does not exist: ' + os.path.join(os.getcwd(), filename))
 | |
| 
 | |
|         with open(filename, 'r') as f:
 | |
|             solution = json.load(f)
 | |
| 
 | |
|         for key in solution.keys():
 | |
|             (field, stage) = key.split('_')
 | |
|             self.set(int(stage), field, np.array(solution[key]))
 | |
| 
 | |
| 
 | |
|     def get_stats(self, field_):
 | |
|         """
 | |
|         Get the information of the last solver call.
 | |
| 
 | |
|             :param field: string in ['statistics', 'time_tot', 'time_lin', 'time_sim', 'time_sim_ad', 'time_sim_la', 'time_qp', 'time_qp_solver_call', 'time_reg', 'sqp_iter']
 | |
|         Available fileds:
 | |
|             - time_tot: total CPU time previous call
 | |
|             - time_lin: CPU time for linearization
 | |
|             - time_sim: CPU time for integrator
 | |
|             - time_sim_ad: CPU time for integrator contribution of external function calls
 | |
|             - time_sim_la: CPU time for integrator contribution of linear algebra
 | |
|             - time_qp: CPU time qp solution
 | |
|             - time_qp_solver_call: CPU time inside qp solver (without converting the QP)
 | |
|             - time_qp_xcond: time_glob: CPU time globalization
 | |
|             - time_solution_sensitivities: CPU time for previous call to eval_param_sens
 | |
|             - time_reg: CPU time regularization
 | |
|             - sqp_iter: number of SQP iterations
 | |
|             - qp_iter: vector of QP iterations for last SQP call
 | |
|             - statistics: table with info about last iteration
 | |
|             - stat_m: number of rows in statistics matrix
 | |
|             - stat_n: number of columns in statistics matrix
 | |
|             - residuals: residuals of last iterate
 | |
|             - alpha: step sizes of SQP iterations
 | |
|         """
 | |
| 
 | |
|         double_fields = ['time_tot',
 | |
|                   'time_lin',
 | |
|                   'time_sim',
 | |
|                   'time_sim_ad',
 | |
|                   'time_sim_la',
 | |
|                   'time_qp',
 | |
|                   'time_qp_solver_call',
 | |
|                   'time_qp_xcond',
 | |
|                   'time_glob',
 | |
|                   'time_solution_sensitivities',
 | |
|                   'time_reg'
 | |
|         ]
 | |
|         fields = double_fields + [
 | |
|                   'sqp_iter',
 | |
|                   'qp_iter',
 | |
|                   'statistics',
 | |
|                   'stat_m',
 | |
|                   'stat_n',
 | |
|                   'residuals',
 | |
|                   'alpha',
 | |
|                 ]
 | |
|         field = field_.encode('utf-8')
 | |
| 
 | |
|         if field_ in ['sqp_iter', 'stat_m', 'stat_n']:
 | |
|             return self.__get_stat_int(field)
 | |
| 
 | |
|         elif field_ in double_fields:
 | |
|             return self.__get_stat_double(field)
 | |
| 
 | |
|         elif field_ == 'statistics':
 | |
|             sqp_iter = self.get_stats("sqp_iter")
 | |
|             stat_m = self.get_stats("stat_m")
 | |
|             stat_n = self.get_stats("stat_n")
 | |
|             min_size = min([stat_m, sqp_iter+1])
 | |
|             return self.__get_stat_matrix(field, stat_n+1, min_size)
 | |
| 
 | |
|         elif field_ == 'qp_iter':
 | |
|             full_stats = self.get_stats('statistics')
 | |
|             if self.nlp_solver_type == 'SQP':
 | |
|                 return full_stats[6, :]
 | |
|             elif self.nlp_solver_type == 'SQP_RTI':
 | |
|                 return full_stats[2, :]
 | |
| 
 | |
|         elif field_ == 'alpha':
 | |
|             full_stats = self.get_stats('statistics')
 | |
|             if self.nlp_solver_type == 'SQP':
 | |
|                 return full_stats[7, :]
 | |
|             else: # self.nlp_solver_type == 'SQP_RTI':
 | |
|                 raise Exception("alpha values are not available for SQP_RTI")
 | |
| 
 | |
|         elif field_ == 'residuals':
 | |
|             return self.get_residuals()
 | |
| 
 | |
|         else:
 | |
|             raise NotImplementedError("TODO!")
 | |
| 
 | |
| 
 | |
|     def __get_stat_int(self, field):
 | |
|         cdef int out
 | |
|         acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> &out)
 | |
|         return out
 | |
| 
 | |
|     def __get_stat_double(self, field):
 | |
|         cdef cnp.ndarray[cnp.float64_t, ndim=1] out = np.zeros((1,))
 | |
|         acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> out.data)
 | |
|         return out
 | |
| 
 | |
|     def __get_stat_matrix(self, field, n, m):
 | |
|         cdef cnp.ndarray[cnp.float64_t, ndim=2] out_mat = np.ascontiguousarray(np.zeros((n, m)), dtype=np.float64)
 | |
|         acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> out_mat.data)
 | |
|         return out_mat
 | |
| 
 | |
| 
 | |
|     def get_cost(self):
 | |
|         """
 | |
|         Returns the cost value of the current solution.
 | |
|         """
 | |
|         # compute cost internally
 | |
|         acados_solver_common.ocp_nlp_eval_cost(self.nlp_solver, self.nlp_in, self.nlp_out)
 | |
| 
 | |
|         # create output
 | |
|         cdef double out
 | |
| 
 | |
|         # call getter
 | |
|         acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, "cost_value", <void *> &out)
 | |
| 
 | |
|         return out
 | |
| 
 | |
| 
 | |
|     def get_residuals(self, recompute=False):
 | |
|         """
 | |
|         Returns an array of the form [res_stat, res_eq, res_ineq, res_comp].
 | |
|         """
 | |
|         # compute residuals if RTI
 | |
|         if self.nlp_solver_type == 'SQP_RTI' or recompute:
 | |
|             acados_solver_common.ocp_nlp_eval_residuals(self.nlp_solver, self.nlp_in, self.nlp_out)
 | |
| 
 | |
|         # create output array
 | |
|         cdef cnp.ndarray[cnp.float64_t, ndim=1] out = np.ascontiguousarray(np.zeros((4,), dtype=np.float64))
 | |
|         cdef double double_value
 | |
| 
 | |
|         field = "res_stat".encode('utf-8')
 | |
|         acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> &double_value)
 | |
|         out[0] = double_value
 | |
| 
 | |
|         field = "res_eq".encode('utf-8')
 | |
|         acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> &double_value)
 | |
|         out[1] = double_value
 | |
| 
 | |
|         field = "res_ineq".encode('utf-8')
 | |
|         acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> &double_value)
 | |
|         out[2] = double_value
 | |
| 
 | |
|         field = "res_comp".encode('utf-8')
 | |
|         acados_solver_common.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, <void *> &double_value)
 | |
|         out[3] = double_value
 | |
| 
 | |
|         return out
 | |
| 
 | |
| 
 | |
|     # Note: this function should not be used anymore, better use cost_set, constraints_set
 | |
|     def set(self, int stage, str field_, value_):
 | |
| 
 | |
|         """
 | |
|         Set numerical data inside the solver.
 | |
| 
 | |
|             :param stage: integer corresponding to shooting node
 | |
|             :param field: string in ['x', 'u', 'pi', 'lam', 't', 'p']
 | |
| 
 | |
|             .. note:: regarding lam, t: \n
 | |
|                     the inequalities are internally organized in the following order: \n
 | |
|                     [ lbu lbx lg lh lphi ubu ubx ug uh uphi; \n
 | |
|                       lsbu lsbx lsg lsh lsphi usbu usbx usg ush usphi]
 | |
| 
 | |
|             .. note:: pi: multipliers for dynamics equality constraints \n
 | |
|                       lam: multipliers for inequalities \n
 | |
|                       t: slack variables corresponding to evaluation of all inequalities (at the solution) \n
 | |
|                       sl: slack variables of soft lower inequality constraints \n
 | |
|                       su: slack variables of soft upper inequality constraints \n
 | |
|         """
 | |
|         cost_fields = ['y_ref', 'yref']
 | |
|         constraints_fields = ['lbx', 'ubx', 'lbu', 'ubu']
 | |
|         out_fields = ['x', 'u', 'pi', 'lam', 't', 'z', 'sl', 'su']
 | |
|         mem_fields = ['xdot_guess', 'z_guess']
 | |
| 
 | |
|         field = field_.encode('utf-8')
 | |
| 
 | |
|         cdef cnp.ndarray[cnp.float64_t, ndim=1] value = np.ascontiguousarray(value_, dtype=np.float64)
 | |
| 
 | |
|         # treat parameters separately
 | |
|         if field_ == 'p':
 | |
|             assert acados_solver.acados_update_params(self.capsule, stage, <double *> value.data, value.shape[0]) == 0
 | |
|         else:
 | |
|             if field_ not in constraints_fields + cost_fields + out_fields:
 | |
|                 raise Exception("AcadosOcpSolverCython.set(): {} is not a valid argument.\
 | |
|                     \nPossible values are {}. Exiting.".format(field, \
 | |
|                     constraints_fields + cost_fields + out_fields + ['p']))
 | |
| 
 | |
|             dims = acados_solver_common.ocp_nlp_dims_get_from_attr(self.nlp_config,
 | |
|                 self.nlp_dims, self.nlp_out, stage, field)
 | |
| 
 | |
|             if value_.shape[0] != dims:
 | |
|                 msg = 'AcadosOcpSolverCython.set(): mismatching dimension for field "{}" '.format(field_)
 | |
|                 msg += 'with dimension {} (you have {})'.format(dims, value_.shape[0])
 | |
|                 raise Exception(msg)
 | |
| 
 | |
|             if field_ in constraints_fields:
 | |
|                 acados_solver_common.ocp_nlp_constraints_model_set(self.nlp_config,
 | |
|                     self.nlp_dims, self.nlp_in, stage, field, <void *> value.data)
 | |
|             elif field_ in cost_fields:
 | |
|                 acados_solver_common.ocp_nlp_cost_model_set(self.nlp_config,
 | |
|                     self.nlp_dims, self.nlp_in, stage, field, <void *> value.data)
 | |
|             elif field_ in out_fields:
 | |
|                 acados_solver_common.ocp_nlp_out_set(self.nlp_config,
 | |
|                     self.nlp_dims, self.nlp_out, stage, field, <void *> value.data)
 | |
|             elif field_ in mem_fields:
 | |
|                 acados_solver_common.ocp_nlp_set(self.nlp_config, \
 | |
|                     self.nlp_solver, stage, field, <void *> value.data)
 | |
| 
 | |
| 
 | |
|     def cost_set(self, int stage, str field_, value_):
 | |
|         """
 | |
|         Set numerical data in the cost module of the solver.
 | |
| 
 | |
|             :param stage: integer corresponding to shooting node
 | |
|             :param field: string, e.g. 'yref', 'W', 'ext_cost_num_hess'
 | |
|             :param value: of appropriate size
 | |
|         """
 | |
|         field = field_.encode('utf-8')
 | |
| 
 | |
|         cdef int dims[2]
 | |
|         acados_solver_common.ocp_nlp_cost_dims_get_from_attr(self.nlp_config, \
 | |
|             self.nlp_dims, self.nlp_out, stage, field, &dims[0])
 | |
| 
 | |
|         cdef double[::1,:] value
 | |
| 
 | |
|         value_shape = value_.shape
 | |
|         if len(value_shape) == 1:
 | |
|             value_shape = (value_shape[0], 0)
 | |
|             value = np.asfortranarray(value_[None,:])
 | |
| 
 | |
|         elif len(value_shape) == 2:
 | |
|             # Get elements in column major order
 | |
|             value = np.asfortranarray(value_)
 | |
| 
 | |
|         if value_shape[0] != dims[0] or value_shape[1] != dims[1]:
 | |
|             raise Exception('AcadosOcpSolverCython.cost_set(): mismatching dimension' +
 | |
|                 f' for field "{field_}" at stage {stage} with dimension {tuple(dims)} (you have {value_shape})')
 | |
| 
 | |
|         acados_solver_common.ocp_nlp_cost_model_set(self.nlp_config, \
 | |
|             self.nlp_dims, self.nlp_in, stage, field, <void *> &value[0][0])
 | |
| 
 | |
| 
 | |
|     def constraints_set(self, int stage, str field_, value_):
 | |
|         """
 | |
|         Set numerical data in the constraint module of the solver.
 | |
| 
 | |
|             :param stage: integer corresponding to shooting node
 | |
|             :param field: string in ['lbx', 'ubx', 'lbu', 'ubu', 'lg', 'ug', 'lh', 'uh', 'uphi', 'C', 'D']
 | |
|             :param value: of appropriate size
 | |
|         """
 | |
|         field = field_.encode('utf-8')
 | |
| 
 | |
|         cdef int dims[2]
 | |
|         acados_solver_common.ocp_nlp_constraint_dims_get_from_attr(self.nlp_config, \
 | |
|             self.nlp_dims, self.nlp_out, stage, field, &dims[0])
 | |
| 
 | |
|         cdef double[::1,:] value
 | |
| 
 | |
|         value_shape = value_.shape
 | |
|         if len(value_shape) == 1:
 | |
|             value_shape = (value_shape[0], 0)
 | |
|             value = np.asfortranarray(value_[None,:])
 | |
| 
 | |
|         elif len(value_shape) == 2:
 | |
|             # Get elements in column major order
 | |
|             value = np.asfortranarray(value_)
 | |
| 
 | |
|         if value_shape[0] != dims[0] or value_shape[1] != dims[1]:
 | |
|             raise Exception(f'AcadosOcpSolverCython.constraints_set(): mismatching dimension' +
 | |
|                 f' for field "{field_}" at stage {stage} with dimension {tuple(dims)} (you have {value_shape})')
 | |
| 
 | |
|         acados_solver_common.ocp_nlp_constraints_model_set(self.nlp_config, \
 | |
|             self.nlp_dims, self.nlp_in, stage, field, <void *> &value[0][0])
 | |
| 
 | |
|         return
 | |
| 
 | |
| 
 | |
|     def dynamics_get(self, int stage, str field_):
 | |
|         """
 | |
|         Get numerical data from the dynamics module of the solver:
 | |
| 
 | |
|             :param stage: integer corresponding to shooting node
 | |
|             :param field: string, e.g. 'A'
 | |
|         """
 | |
|         field = field_.encode('utf-8')
 | |
| 
 | |
|         # get dims
 | |
|         cdef int[2] dims
 | |
|         acados_solver_common.ocp_nlp_dynamics_dims_get_from_attr(self.nlp_config, self.nlp_dims, self.nlp_out, stage, field, &dims[0])
 | |
| 
 | |
|         # create output data
 | |
|         cdef cnp.ndarray[cnp.float64_t, ndim=2] out = np.zeros((dims[0], dims[1]), order='F')
 | |
| 
 | |
|         # call getter
 | |
|         acados_solver_common.ocp_nlp_get_at_stage(self.nlp_config, self.nlp_dims, self.nlp_solver, stage, field, <void *> out.data)
 | |
| 
 | |
|         return out
 | |
| 
 | |
| 
 | |
|     def options_set(self, str field_, value_):
 | |
|         """
 | |
|         Set options of the solver.
 | |
| 
 | |
|             :param field: string, e.g. 'print_level', 'rti_phase', 'initialize_t_slacks', 'step_length', 'alpha_min', 'alpha_reduction', 'qp_warm_start', 'line_search_use_sufficient_descent', 'full_step_dual', 'globalization_use_SOC', 'qp_tol_stat', 'qp_tol_eq', 'qp_tol_ineq', 'qp_tol_comp', 'qp_tau_min', 'qp_mu0'
 | |
| 
 | |
|             :param value: of type int, float, string
 | |
| 
 | |
|             - qp_tol_stat: QP solver tolerance stationarity
 | |
|             - qp_tol_eq: QP solver tolerance equalities
 | |
|             - qp_tol_ineq: QP solver tolerance inequalities
 | |
|             - qp_tol_comp: QP solver tolerance complementarity
 | |
|             - qp_tau_min: for HPIPM QP solvers: minimum value of barrier parameter in HPIPM
 | |
|             - qp_mu0: for HPIPM QP solvers: initial value for complementarity slackness
 | |
|             - warm_start_first_qp: indicates if first QP in SQP is warm_started
 | |
|         """
 | |
|         int_fields = ['print_level', 'rti_phase', 'initialize_t_slacks', 'qp_warm_start', 'line_search_use_sufficient_descent', 'full_step_dual', 'globalization_use_SOC', 'warm_start_first_qp']
 | |
|         double_fields = ['step_length', 'tol_eq', 'tol_stat', 'tol_ineq', 'tol_comp', 'alpha_min', 'alpha_reduction', 'eps_sufficient_descent',
 | |
|         'qp_tol_stat', 'qp_tol_eq', 'qp_tol_ineq', 'qp_tol_comp', 'qp_tau_min', 'qp_mu0']
 | |
|         string_fields = ['globalization']
 | |
| 
 | |
|         # encode
 | |
|         field = field_.encode('utf-8')
 | |
| 
 | |
|         cdef int int_value
 | |
|         cdef double double_value
 | |
|         cdef unsigned char[::1] string_value
 | |
| 
 | |
|         # check field availability and type
 | |
|         if field_ in int_fields:
 | |
|             if not isinstance(value_, int):
 | |
|                 raise Exception('solver option {} must be of type int. You have {}.'.format(field_, type(value_)))
 | |
| 
 | |
|             if field_ == 'rti_phase':
 | |
|                 if value_ < 0 or value_ > 2:
 | |
|                     raise Exception('AcadosOcpSolverCython.solve(): argument \'rti_phase\' can '
 | |
|                         'take only values 0, 1, 2 for SQP-RTI-type solvers')
 | |
|                 if self.nlp_solver_type != 'SQP_RTI' and value_ > 0:
 | |
|                     raise Exception('AcadosOcpSolverCython.solve(): argument \'rti_phase\' can '
 | |
|                         'take only value 0 for SQP-type solvers')
 | |
| 
 | |
|             int_value = value_
 | |
|             acados_solver_common.ocp_nlp_solver_opts_set(self.nlp_config, self.nlp_opts, field, <void *> &int_value)
 | |
| 
 | |
|         elif field_ in double_fields:
 | |
|             if not isinstance(value_, float):
 | |
|                 raise Exception('solver option {} must be of type float. You have {}.'.format(field_, type(value_)))
 | |
| 
 | |
|             double_value = value_
 | |
|             acados_solver_common.ocp_nlp_solver_opts_set(self.nlp_config, self.nlp_opts, field, <void *> &double_value)
 | |
| 
 | |
|         elif field_ in string_fields:
 | |
|             if not isinstance(value_, bytes):
 | |
|                 raise Exception('solver option {} must be of type str. You have {}.'.format(field_, type(value_)))
 | |
| 
 | |
|             string_value = value_.encode('utf-8')
 | |
|             acados_solver_common.ocp_nlp_solver_opts_set(self.nlp_config, self.nlp_opts, field, <void *> &string_value[0])
 | |
| 
 | |
|         else:
 | |
|             raise Exception('AcadosOcpSolverCython.options_set() does not support field {}.'\
 | |
|                 '\n Possible values are {}.'.format(field_, ', '.join(int_fields + double_fields + string_fields)))
 | |
| 
 | |
| 
 | |
|     def __del__(self):
 | |
|         if self.solver_created:
 | |
|             acados_solver.acados_free(self.capsule)
 | |
|             acados_solver.acados_free_capsule(self.capsule)
 | |
| 
 |