You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
66 lines
1.6 KiB
66 lines
1.6 KiB
import bisect
|
|
import numpy as np
|
|
from scipy.interpolate import interp1d
|
|
|
|
|
|
def deep_interp_0_fast(dx, x, y):
|
|
FIX = False
|
|
if len(y.shape) == 1:
|
|
y = y[:, None]
|
|
FIX = True
|
|
ret = np.zeros((dx.shape[0], y.shape[1]))
|
|
index = list(x)
|
|
for i in range(dx.shape[0]):
|
|
idx = bisect.bisect_left(index, dx[i])
|
|
if idx == x.shape[0]:
|
|
idx = x.shape[0] - 1
|
|
ret[i] = y[idx]
|
|
|
|
if FIX:
|
|
return ret[:, 0]
|
|
else:
|
|
return ret
|
|
|
|
|
|
def running_mean(x, N):
|
|
cumsum = np.cumsum(np.insert(x, [0]*(int(N/2)) + [-1]*(N-int(N/2)), [x[0]]*int(N/2) + [x[-1]]*(N-int(N/2))))
|
|
return (cumsum[N:] - cumsum[:-N]) / N
|
|
|
|
|
|
def deep_interp_np(x, xp, fp):
|
|
x = np.atleast_1d(x)
|
|
xp = np.array(xp)
|
|
if len(xp) < 2:
|
|
return np.repeat(fp, len(x), axis=0)
|
|
if min(np.diff(xp)) < 0:
|
|
raise RuntimeError('Bad x array for interpolation')
|
|
j = np.searchsorted(xp, x) - 1
|
|
j = np.clip(j, 0, len(xp)-2)
|
|
d = np.divide(x - xp[j], xp[j + 1] - xp[j], out=np.ones_like(x, dtype=np.float64), where=xp[j + 1] - xp[j] != 0)
|
|
vals_interp = (fp[j].T*(1 - d)).T + (fp[j + 1].T*d).T
|
|
if len(vals_interp) == 1:
|
|
return vals_interp[0]
|
|
else:
|
|
return vals_interp
|
|
|
|
|
|
def clipping_deep_interp(x, xp, fp):
|
|
if len(xp) < 2:
|
|
return deep_interp_np(x, xp, fp)
|
|
bad_idx = np.where(np.diff(xp) < 0)[0]
|
|
if len(bad_idx) > 0:
|
|
if bad_idx[0] ==1:
|
|
return np.zeros([] + list(fp.shape[1:]))
|
|
return deep_interp_np(x, xp[:bad_idx[0]], fp[:bad_idx[0]])
|
|
else:
|
|
return deep_interp_np(x, xp, fp)
|
|
|
|
|
|
def deep_interp(dx, x, y, kind="slinear"):
|
|
return interp1d(
|
|
x, y,
|
|
axis=0,
|
|
kind=kind,
|
|
bounds_error=False,
|
|
fill_value="extrapolate",
|
|
assume_sorted=True)(dx)
|
|
|