openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

451 lines
17 KiB

// Copyright (C) 2004, 2007 International Business Machines and others.
// All Rights Reserved.
// This code is published under the Eclipse Public License.
//
// $Id: IpNLPScaling.hpp 2269 2013-05-05 11:32:40Z stefan $
//
// Authors: Carl Laird, Andreas Waechter IBM 2004-08-13
#ifndef __IPNLPSCALING_HPP__
#define __IPNLPSCALING_HPP__
#include "IpOptionsList.hpp"
#include "IpRegOptions.hpp"
namespace Ipopt
{
// forward declarations
class Vector;
class VectorSpace;
class Matrix;
class MatrixSpace;
class SymMatrix;
class SymMatrixSpace;
class ScaledMatrixSpace;
class SymScaledMatrixSpace;
/** This is the abstract base class for problem scaling.
* It is repsonsible for determining the scaling factors
* and mapping quantities in and out of scaled and unscaled
* versions
*/
class NLPScalingObject : public ReferencedObject
{
public:
/**@name Constructors/Destructors */
//@{
NLPScalingObject();
/** Default destructor */
virtual ~NLPScalingObject();
//@}
/** Method to initialize the options */
bool Initialize(const Journalist& jnlst,
const OptionsList& options,
const std::string& prefix)
{
jnlst_ = &jnlst;
return InitializeImpl(options, prefix);
}
/** Methods to map scaled and unscaled matrices */
//@{
/** Returns an obj-scaled version of the given scalar */
virtual Number apply_obj_scaling(const Number& f)=0;
/** Returns an obj-unscaled version of the given scalar */
virtual Number unapply_obj_scaling(const Number& f)=0;
/** Returns an x-scaled version of the given vector */
virtual SmartPtr<Vector>
apply_vector_scaling_x_NonConst(const SmartPtr<const Vector>& v)=0;
/** Returns an x-scaled version of the given vector */
virtual SmartPtr<const Vector>
apply_vector_scaling_x(const SmartPtr<const Vector>& v)=0;
/** Returns an x-unscaled version of the given vector */
virtual SmartPtr<Vector>
unapply_vector_scaling_x_NonConst(const SmartPtr<const Vector>& v)=0;
/** Returns an x-unscaled version of the given vector */
virtual SmartPtr<const Vector>
unapply_vector_scaling_x(const SmartPtr<const Vector>& v)=0;
/** Returns an c-scaled version of the given vector */
virtual SmartPtr<const Vector>
apply_vector_scaling_c(const SmartPtr<const Vector>& v)=0;
/** Returns an c-unscaled version of the given vector */
virtual SmartPtr<const Vector>
unapply_vector_scaling_c(const SmartPtr<const Vector>& v)=0;
/** Returns an c-scaled version of the given vector */
virtual SmartPtr<Vector>
apply_vector_scaling_c_NonConst(const SmartPtr<const Vector>& v)=0;
/** Returns an c-unscaled version of the given vector */
virtual SmartPtr<Vector>
unapply_vector_scaling_c_NonConst(const SmartPtr<const Vector>& v)=0;
/** Returns an d-scaled version of the given vector */
virtual SmartPtr<const Vector>
apply_vector_scaling_d(const SmartPtr<const Vector>& v)=0;
/** Returns an d-unscaled version of the given vector */
virtual SmartPtr<const Vector>
unapply_vector_scaling_d(const SmartPtr<const Vector>& v)=0;
/** Returns an d-scaled version of the given vector */
virtual SmartPtr<Vector>
apply_vector_scaling_d_NonConst(const SmartPtr<const Vector>& v)=0;
/** Returns an d-unscaled version of the given vector */
virtual SmartPtr<Vector>
unapply_vector_scaling_d_NonConst(const SmartPtr<const Vector>& v)=0;
/** Returns a scaled version of the jacobian for c. If the
* overloaded method does not make a new matrix, make sure to set
* the matrix ptr passed in to NULL.
*/
virtual SmartPtr<const Matrix>
apply_jac_c_scaling(SmartPtr<const Matrix> matrix)=0;
/** Returns a scaled version of the jacobian for d If the
* overloaded method does not create a new matrix, make sure to
* set the matrix ptr passed in to NULL.
*/
virtual SmartPtr<const Matrix>
apply_jac_d_scaling(SmartPtr<const Matrix> matrix)=0;
/** Returns a scaled version of the hessian of the lagrangian If
* the overloaded method does not create a new matrix, make sure
* to set the matrix ptr passed in to NULL.
*/
virtual SmartPtr<const SymMatrix>
apply_hessian_scaling(SmartPtr<const SymMatrix> matrix)=0;
//@}
/** Methods for scaling bounds - these wrap those above */
//@{
/** Returns an x-scaled vector in the x_L or x_U space */
SmartPtr<Vector> apply_vector_scaling_x_LU_NonConst(
const Matrix& Px_LU,
const SmartPtr<const Vector>& lu,
const VectorSpace& x_space);
/** Returns an x-scaled vector in the x_L or x_U space */
SmartPtr<const Vector> apply_vector_scaling_x_LU(
const Matrix& Px_LU,
const SmartPtr<const Vector>& lu,
const VectorSpace& x_space);
/** Returns an d-scaled vector in the d_L or d_U space */
SmartPtr<Vector> apply_vector_scaling_d_LU_NonConst(
const Matrix& Pd_LU,
const SmartPtr<const Vector>& lu,
const VectorSpace& d_space);
/** Returns an d-scaled vector in the d_L or d_U space */
SmartPtr<const Vector> apply_vector_scaling_d_LU(
const Matrix& Pd_LU,
const SmartPtr<const Vector>& lu,
const VectorSpace& d_space);
/** Returns an d-unscaled vector in the d_L or d_U space */
SmartPtr<Vector> unapply_vector_scaling_d_LU_NonConst(
const Matrix& Pd_LU,
const SmartPtr<const Vector>& lu,
const VectorSpace& d_space);
/** Returns an d-unscaled vector in the d_L or d_U space */
SmartPtr<const Vector> unapply_vector_scaling_d_LU(
const Matrix& Pd_LU,
const SmartPtr<const Vector>& lu,
const VectorSpace& d_space);
//@}
/** Methods for scaling the gradient of the objective - wraps the
* virtual methods above
*/
//@{
/** Returns a grad_f scaled version (d_f * D_x^{-1}) of the given vector */
virtual SmartPtr<Vector>
apply_grad_obj_scaling_NonConst(const SmartPtr<const Vector>& v);
/** Returns a grad_f scaled version (d_f * D_x^{-1}) of the given vector */
virtual SmartPtr<const Vector>
apply_grad_obj_scaling(const SmartPtr<const Vector>& v);
/** Returns a grad_f unscaled version (d_f * D_x^{-1}) of the
* given vector */
virtual SmartPtr<Vector>
unapply_grad_obj_scaling_NonConst(const SmartPtr<const Vector>& v);
/** Returns a grad_f unscaled version (d_f * D_x^{-1}) of the
* given vector */
virtual SmartPtr<const Vector>
unapply_grad_obj_scaling(const SmartPtr<const Vector>& v);
//@}
/** @name Methods for determining whether scaling for entities is
* done */
//@{
/** Returns true if the primal x variables are scaled. */
virtual bool have_x_scaling()=0;
/** Returns true if the equality constraints are scaled. */
virtual bool have_c_scaling()=0;
/** Returns true if the inequality constraints are scaled. */
virtual bool have_d_scaling()=0;
//@}
/** This method is called by the IpoptNLP's at a convenient time to
* compute and/or read scaling factors
*/
virtual void DetermineScaling(const SmartPtr<const VectorSpace> x_space,
const SmartPtr<const VectorSpace> c_space,
const SmartPtr<const VectorSpace> d_space,
const SmartPtr<const MatrixSpace> jac_c_space,
const SmartPtr<const MatrixSpace> jac_d_space,
const SmartPtr<const SymMatrixSpace> h_space,
SmartPtr<const MatrixSpace>& new_jac_c_space,
SmartPtr<const MatrixSpace>& new_jac_d_space,
SmartPtr<const SymMatrixSpace>& new_h_space,
const Matrix& Px_L, const Vector& x_L,
const Matrix& Px_U, const Vector& x_U)=0;
protected:
/** Implementation of the initialization method that has to be
* overloaded by for each derived class. */
virtual bool InitializeImpl(const OptionsList& options,
const std::string& prefix)=0;
/** Accessor method for the journalist */
const Journalist& Jnlst() const
{
return *jnlst_;
}
private:
/**@name Default Compiler Generated Methods
* (Hidden to avoid implicit creation/calling).
* These methods are not implemented and
* we do not want the compiler to implement
* them for us, so we declare them private
* and do not define them. This ensures that
* they will not be implicitly created/called. */
//@{
/** Copy Constructor */
NLPScalingObject(const NLPScalingObject&);
/** Overloaded Equals Operator */
void operator=(const NLPScalingObject&);
//@}
SmartPtr<const Journalist> jnlst_;
};
/** This is a base class for many standard scaling
* techniques. The overloaded classes only need to
* provide the scaling parameters
*/
class StandardScalingBase : public NLPScalingObject
{
public:
/**@name Constructors/Destructors */
//@{
StandardScalingBase();
/** Default destructor */
virtual ~StandardScalingBase();
//@}
/** Methods to map scaled and unscaled matrices */
//@{
/** Returns an obj-scaled version of the given scalar */
virtual Number apply_obj_scaling(const Number& f);
/** Returns an obj-unscaled version of the given scalar */
virtual Number unapply_obj_scaling(const Number& f);
/** Returns an x-scaled version of the given vector */
virtual SmartPtr<Vector>
apply_vector_scaling_x_NonConst(const SmartPtr<const Vector>& v);
/** Returns an x-scaled version of the given vector */
virtual SmartPtr<const Vector>
apply_vector_scaling_x(const SmartPtr<const Vector>& v);
/** Returns an x-unscaled version of the given vector */
virtual SmartPtr<Vector>
unapply_vector_scaling_x_NonConst(const SmartPtr<const Vector>& v);
/** Returns an x-unscaled version of the given vector */
virtual SmartPtr<const Vector>
unapply_vector_scaling_x(const SmartPtr<const Vector>& v);
/** Returns an c-scaled version of the given vector */
virtual SmartPtr<const Vector>
apply_vector_scaling_c(const SmartPtr<const Vector>& v);
/** Returns an c-unscaled version of the given vector */
virtual SmartPtr<const Vector>
unapply_vector_scaling_c(const SmartPtr<const Vector>& v);
/** Returns an c-scaled version of the given vector */
virtual SmartPtr<Vector>
apply_vector_scaling_c_NonConst(const SmartPtr<const Vector>& v);
/** Returns an c-unscaled version of the given vector */
virtual SmartPtr<Vector>
unapply_vector_scaling_c_NonConst(const SmartPtr<const Vector>& v);
/** Returns an d-scaled version of the given vector */
virtual SmartPtr<const Vector>
apply_vector_scaling_d(const SmartPtr<const Vector>& v);
/** Returns an d-unscaled version of the given vector */
virtual SmartPtr<const Vector>
unapply_vector_scaling_d(const SmartPtr<const Vector>& v);
/** Returns an d-scaled version of the given vector */
virtual SmartPtr<Vector>
apply_vector_scaling_d_NonConst(const SmartPtr<const Vector>& v);
/** Returns an d-unscaled version of the given vector */
virtual SmartPtr<Vector>
unapply_vector_scaling_d_NonConst(const SmartPtr<const Vector>& v);
/** Returns a scaled version of the jacobian for c. If the
* overloaded method does not make a new matrix, make sure to set
* the matrix ptr passed in to NULL.
*/
virtual SmartPtr<const Matrix>
apply_jac_c_scaling(SmartPtr<const Matrix> matrix);
/** Returns a scaled version of the jacobian for d If the
* overloaded method does not create a new matrix, make sure to
* set the matrix ptr passed in to NULL.
*/
virtual SmartPtr<const Matrix>
apply_jac_d_scaling(SmartPtr<const Matrix> matrix);
/** Returns a scaled version of the hessian of the lagrangian If
* the overloaded method does not create a new matrix, make sure
* to set the matrix ptr passed in to NULL.
*/
virtual SmartPtr<const SymMatrix>
apply_hessian_scaling(SmartPtr<const SymMatrix> matrix);
//@}
/** @name Methods for determining whether scaling for entities is
* done */
//@{
virtual bool have_x_scaling();
virtual bool have_c_scaling();
virtual bool have_d_scaling();
//@}
/** This method is called by the IpoptNLP's at a convenient time to
* compute and/or read scaling factors
*/
virtual void DetermineScaling(const SmartPtr<const VectorSpace> x_space,
const SmartPtr<const VectorSpace> c_space,
const SmartPtr<const VectorSpace> d_space,
const SmartPtr<const MatrixSpace> jac_c_space,
const SmartPtr<const MatrixSpace> jac_d_space,
const SmartPtr<const SymMatrixSpace> h_space,
SmartPtr<const MatrixSpace>& new_jac_c_space,
SmartPtr<const MatrixSpace>& new_jac_d_space,
SmartPtr<const SymMatrixSpace>& new_h_space,
const Matrix& Px_L, const Vector& x_L,
const Matrix& Px_U, const Vector& x_U);
/** Methods for IpoptType */
//@{
static void RegisterOptions(SmartPtr<RegisteredOptions> roptions);
//@}
protected:
/** Overloaded initialization method */
virtual bool InitializeImpl(const OptionsList& options,
const std::string& prefix);
/** This is the method that has to be overloaded by a particular
* scaling method that somehow computes the scaling vectors dx,
* dc, and dd. The pointers to those vectors can be NULL, in
* which case no scaling for that item will be done later. */
virtual void DetermineScalingParametersImpl(
const SmartPtr<const VectorSpace> x_space,
const SmartPtr<const VectorSpace> c_space,
const SmartPtr<const VectorSpace> d_space,
const SmartPtr<const MatrixSpace> jac_c_space,
const SmartPtr<const MatrixSpace> jac_d_space,
const SmartPtr<const SymMatrixSpace> h_space,
const Matrix& Px_L, const Vector& x_L,
const Matrix& Px_U, const Vector& x_U,
Number& df,
SmartPtr<Vector>& dx,
SmartPtr<Vector>& dc,
SmartPtr<Vector>& dd)=0;
private:
/**@name Default Compiler Generated Methods
* (Hidden to avoid implicit creation/calling).
* These methods are not implemented and
* we do not want the compiler to implement
* them for us, so we declare them private
* and do not define them. This ensures that
* they will not be implicitly created/called. */
//@{
/** Copy Constructor */
StandardScalingBase(const StandardScalingBase&);
/** Overloaded Equals Operator */
void operator=(const StandardScalingBase&);
//@}
/** Scaling parameters - we only need to keep copies of
* the objective scaling and the x scaling - the others we can
* get from the scaled matrix spaces.
*/
//@{
/** objective scaling parameter */
Number df_;
/** x scaling */
SmartPtr<Vector> dx_;
//@}
/** Scaled Matrix Spaces */
//@{
/** Scaled jacobian of c space */
SmartPtr<ScaledMatrixSpace> scaled_jac_c_space_;
/** Scaled jacobian of d space */
SmartPtr<ScaledMatrixSpace> scaled_jac_d_space_;
/** Scaled hessian of lagrangian spacea */
SmartPtr<SymScaledMatrixSpace> scaled_h_space_;
//@}
/** @name Algorithmic parameters */
//@{
/** Additional scaling value for the objective function */
Number obj_scaling_factor_;
//@}
};
/** Class implementing the scaling object that doesn't to any scaling */
class NoNLPScalingObject : public StandardScalingBase
{
public:
/**@name Constructors/Destructors */
//@{
NoNLPScalingObject()
{}
/** Default destructor */
virtual ~NoNLPScalingObject()
{}
//@}
protected:
/** Overloaded from StandardScalingBase */
virtual void DetermineScalingParametersImpl(
const SmartPtr<const VectorSpace> x_space,
const SmartPtr<const VectorSpace> c_space,
const SmartPtr<const VectorSpace> d_space,
const SmartPtr<const MatrixSpace> jac_c_space,
const SmartPtr<const MatrixSpace> jac_d_space,
const SmartPtr<const SymMatrixSpace> h_space,
const Matrix& Px_L, const Vector& x_L,
const Matrix& Px_U, const Vector& x_U,
Number& df,
SmartPtr<Vector>& dx,
SmartPtr<Vector>& dc,
SmartPtr<Vector>& dd);
private:
/**@name Default Compiler Generated Methods
* (Hidden to avoid implicit creation/calling).
* These methods are not implemented and
* we do not want the compiler to implement
* them for us, so we declare them private
* and do not define them. This ensures that
* they will not be implicitly created/called. */
//@{
/** Copy Constructor */
NoNLPScalingObject(const NoNLPScalingObject&);
/** Overloaded Equals Operator */
void operator=(const NoNLPScalingObject&);
//@}
};
} // namespace Ipopt
#endif