openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

488 lines
15 KiB

// Copyright (C) 2004, 2010 International Business Machines and others.
// All Rights Reserved.
// This code is published under the Eclipse Public License.
//
// $Id: IpOrigIpoptNLP.hpp 2594 2015-08-09 14:31:05Z stefan $
//
// Authors: Carl Laird, Andreas Waechter IBM 2004-08-13
#ifndef __IPORIGIPOPTNLP_HPP__
#define __IPORIGIPOPTNLP_HPP__
#include "IpIpoptNLP.hpp"
#include "IpException.hpp"
#include "IpTimingStatistics.hpp"
namespace Ipopt
{
/** enumeration for the Hessian information type. */
enum HessianApproximationType {
EXACT=0,
LIMITED_MEMORY
};
/** enumeration for the Hessian approximation space. */
enum HessianApproximationSpace {
NONLINEAR_VARS=0,
ALL_VARS
};
/** This class maps the traditional NLP into
* something that is more useful by Ipopt.
* This class takes care of storing the
* calculated model results, handles caching,
* and (some day) takes care of addition of slacks.
*/
class OrigIpoptNLP : public IpoptNLP
{
public:
/**@name Constructors/Destructors */
//@{
OrigIpoptNLP(const SmartPtr<const Journalist>& jnlst,
const SmartPtr<NLP>& nlp,
const SmartPtr<NLPScalingObject>& nlp_scaling);
/** Default destructor */
virtual ~OrigIpoptNLP();
//@}
/** Initialize - overloaded from IpoptNLP */
virtual bool Initialize(const Journalist& jnlst,
const OptionsList& options,
const std::string& prefix);
/** Initialize (create) structures for
* the iteration data */
virtual bool InitializeStructures(SmartPtr<Vector>& x,
bool init_x,
SmartPtr<Vector>& y_c,
bool init_y_c,
SmartPtr<Vector>& y_d,
bool init_y_d,
SmartPtr<Vector>& z_L,
bool init_z_L,
SmartPtr<Vector>& z_U,
bool init_z_U,
SmartPtr<Vector>& v_L,
SmartPtr<Vector>& v_U
);
/** Method accessing the GetWarmStartIterate of the NLP */
virtual bool GetWarmStartIterate(IteratesVector& warm_start_iterate)
{
return nlp_->GetWarmStartIterate(warm_start_iterate);
}
/** Accessor methods for model data */
//@{
/** Objective value */
virtual Number f(const Vector& x);
/** Objective value (depending in mu) - incorrect version for
* OrigIpoptNLP */
virtual Number f(const Vector& x, Number mu);
/** Gradient of the objective */
virtual SmartPtr<const Vector> grad_f(const Vector& x);
/** Gradient of the objective (depending in mu) - incorrect
* version for OrigIpoptNLP */
virtual SmartPtr<const Vector> grad_f(const Vector& x, Number mu);
/** Equality constraint residual */
virtual SmartPtr<const Vector> c(const Vector& x);
/** Jacobian Matrix for equality constraints */
virtual SmartPtr<const Matrix> jac_c(const Vector& x);
/** Inequality constraint residual (reformulated
* as equalities with slacks */
virtual SmartPtr<const Vector> d(const Vector& x);
/** Jacobian Matrix for inequality constraints*/
virtual SmartPtr<const Matrix> jac_d(const Vector& x);
/** Hessian of the Lagrangian */
virtual SmartPtr<const SymMatrix> h(const Vector& x,
Number obj_factor,
const Vector& yc,
const Vector& yd
);
/** Hessian of the Lagrangian (depending in mu) - incorrect
* version for OrigIpoptNLP */
virtual SmartPtr<const SymMatrix> h(const Vector& x,
Number obj_factor,
const Vector& yc,
const Vector& yd,
Number mu);
/** Provides a Hessian matrix from the correct matrix space with
* uninitialized values. This can be used in LeastSquareMults to
* obtain a "zero Hessian". */
virtual SmartPtr<const SymMatrix> uninitialized_h();
/** Lower bounds on x */
virtual SmartPtr<const Vector> x_L() const
{
return x_L_;
}
/** Permutation matrix (x_L_ -> x) */
virtual SmartPtr<const Matrix> Px_L() const
{
return Px_L_;
}
/** Upper bounds on x */
virtual SmartPtr<const Vector> x_U() const
{
return x_U_;
}
/** Permutation matrix (x_U_ -> x */
virtual SmartPtr<const Matrix> Px_U() const
{
return Px_U_;
}
/** Lower bounds on d */
virtual SmartPtr<const Vector> d_L() const
{
return d_L_;
}
/** Permutation matrix (d_L_ -> d) */
virtual SmartPtr<const Matrix> Pd_L() const
{
return Pd_L_;
}
/** Upper bounds on d */
virtual SmartPtr<const Vector> d_U() const
{
return d_U_;
}
/** Permutation matrix (d_U_ -> d */
virtual SmartPtr<const Matrix> Pd_U() const
{
return Pd_U_;
}
virtual SmartPtr<const SymMatrixSpace> HessianMatrixSpace() const
{
return h_space_;
}
virtual SmartPtr<const VectorSpace> x_space() const
{
return x_space_;
}
//@}
/** Accessor method for vector/matrix spaces pointers */
virtual void GetSpaces(SmartPtr<const VectorSpace>& x_space,
SmartPtr<const VectorSpace>& c_space,
SmartPtr<const VectorSpace>& d_space,
SmartPtr<const VectorSpace>& x_l_space,
SmartPtr<const MatrixSpace>& px_l_space,
SmartPtr<const VectorSpace>& x_u_space,
SmartPtr<const MatrixSpace>& px_u_space,
SmartPtr<const VectorSpace>& d_l_space,
SmartPtr<const MatrixSpace>& pd_l_space,
SmartPtr<const VectorSpace>& d_u_space,
SmartPtr<const MatrixSpace>& pd_u_space,
SmartPtr<const MatrixSpace>& Jac_c_space,
SmartPtr<const MatrixSpace>& Jac_d_space,
SmartPtr<const SymMatrixSpace>& Hess_lagrangian_space);
/** Method for adapting the variable bounds. This is called if
* slacks are becoming too small */
virtual void AdjustVariableBounds(const Vector& new_x_L,
const Vector& new_x_U,
const Vector& new_d_L,
const Vector& new_d_U);
/** @name Counters for the number of function evaluations. */
//@{
virtual Index f_evals() const
{
return f_evals_;
}
virtual Index grad_f_evals() const
{
return grad_f_evals_;
}
virtual Index c_evals() const
{
return c_evals_;
}
virtual Index jac_c_evals() const
{
return jac_c_evals_;
}
virtual Index d_evals() const
{
return d_evals_;
}
virtual Index jac_d_evals() const
{
return jac_d_evals_;
}
virtual Index h_evals() const
{
return h_evals_;
}
//@}
/** Solution Routines - overloaded from IpoptNLP*/
//@{
void FinalizeSolution(SolverReturn status,
const Vector& x, const Vector& z_L, const Vector& z_U,
const Vector& c, const Vector& d,
const Vector& y_c, const Vector& y_d,
Number obj_value,
const IpoptData* ip_data,
IpoptCalculatedQuantities* ip_cq);
bool IntermediateCallBack(AlgorithmMode mode,
Index iter, Number obj_value,
Number inf_pr, Number inf_du,
Number mu, Number d_norm,
Number regularization_size,
Number alpha_du, Number alpha_pr,
Index ls_trials,
SmartPtr<const IpoptData> ip_data,
SmartPtr<IpoptCalculatedQuantities> ip_cq);
//@}
/** @name Methods for IpoptType */
//@{
/** Called by IpoptType to register the options */
static void RegisterOptions(SmartPtr<RegisteredOptions> roptions);
//@}
/** Accessor method to the underlying NLP */
SmartPtr<NLP> nlp()
{
return nlp_;
}
/**@name Methods related to function evaluation timing. */
//@{
/** Reset the timing statistics */
void ResetTimes();
void PrintTimingStatistics(Journalist& jnlst,
EJournalLevel level,
EJournalCategory category) const;
const TimedTask& f_eval_time() const
{
return f_eval_time_;
}
const TimedTask& grad_f_eval_time() const
{
return grad_f_eval_time_;
}
const TimedTask& c_eval_time() const
{
return c_eval_time_;
}
const TimedTask& jac_c_eval_time() const
{
return jac_c_eval_time_;
}
const TimedTask& d_eval_time() const
{
return d_eval_time_;
}
const TimedTask& jac_d_eval_time() const
{
return jac_d_eval_time_;
}
const TimedTask& h_eval_time() const
{
return h_eval_time_;
}
Number TotalFunctionEvaluationCpuTime() const;
Number TotalFunctionEvaluationSysTime() const;
Number TotalFunctionEvaluationWallclockTime() const;
//@}
private:
/** journalist */
SmartPtr<const Journalist> jnlst_;
/** Pointer to the NLP */
SmartPtr<NLP> nlp_;
/** Necessary Vector/Matrix spaces */
//@{
SmartPtr<const VectorSpace> x_space_;
SmartPtr<const VectorSpace> c_space_;
SmartPtr<const VectorSpace> d_space_;
SmartPtr<const VectorSpace> x_l_space_;
SmartPtr<const MatrixSpace> px_l_space_;
SmartPtr<const VectorSpace> x_u_space_;
SmartPtr<const MatrixSpace> px_u_space_;
SmartPtr<const VectorSpace> d_l_space_;
SmartPtr<const MatrixSpace> pd_l_space_;
SmartPtr<const VectorSpace> d_u_space_;
SmartPtr<const MatrixSpace> pd_u_space_;
SmartPtr<const MatrixSpace> jac_c_space_;
SmartPtr<const MatrixSpace> jac_d_space_;
SmartPtr<const SymMatrixSpace> h_space_;
SmartPtr<const MatrixSpace> scaled_jac_c_space_;
SmartPtr<const MatrixSpace> scaled_jac_d_space_;
SmartPtr<const SymMatrixSpace> scaled_h_space_;
//@}
/**@name Storage for Model Quantities */
//@{
/** Objective function */
CachedResults<Number> f_cache_;
/** Gradient of the objective function */
CachedResults<SmartPtr<const Vector> > grad_f_cache_;
/** Equality constraint residuals */
CachedResults<SmartPtr<const Vector> > c_cache_;
/** Jacobian Matrix for equality constraints
* (current iteration) */
CachedResults<SmartPtr<const Matrix> > jac_c_cache_;
/** Inequality constraint residual (reformulated
* as equalities with slacks */
CachedResults<SmartPtr<const Vector> > d_cache_;
/** Jacobian Matrix for inequality constraints
* (current iteration) */
CachedResults<SmartPtr<const Matrix> > jac_d_cache_;
/** Hessian of the lagrangian
* (current iteration) */
CachedResults<SmartPtr<const SymMatrix> > h_cache_;
/** Unscaled version of x vector */
CachedResults<SmartPtr<const Vector> > unscaled_x_cache_;
/** Lower bounds on x */
SmartPtr<const Vector> x_L_;
/** Permutation matrix (x_L_ -> x) */
SmartPtr<const Matrix> Px_L_;
/** Upper bounds on x */
SmartPtr<const Vector> x_U_;
/** Permutation matrix (x_U_ -> x */
SmartPtr<const Matrix> Px_U_;
/** Lower bounds on d */
SmartPtr<const Vector> d_L_;
/** Permutation matrix (d_L_ -> d) */
SmartPtr<const Matrix> Pd_L_;
/** Upper bounds on d */
SmartPtr<const Vector> d_U_;
/** Permutation matrix (d_U_ -> d */
SmartPtr<const Matrix> Pd_U_;
/** Original unmodified lower bounds on x */
SmartPtr<const Vector> orig_x_L_;
/** Original unmodified upper bounds on x */
SmartPtr<const Vector> orig_x_U_;
//@}
/**@name Default Compiler Generated Methods
* (Hidden to avoid implicit creation/calling).
* These methods are not implemented and
* we do not want the compiler to implement
* them for us, so we declare them private
* and do not define them. This ensures that
* they will not be implicitly created/called. */
//@{
/** Default Constructor */
OrigIpoptNLP();
/** Copy Constructor */
OrigIpoptNLP(const OrigIpoptNLP&);
/** Overloaded Equals Operator */
void operator=(const OrigIpoptNLP&);
//@}
/** @name auxilliary functions */
//@{
/** relax the bounds by a relative move of relax_bound_factor.
* Here, relax_bound_factor should be negative (or zero) for
* lower bounds, and positive (or zero) for upper bounds.
*/
void relax_bounds(Number bound_relax_factor, Vector& bounds);
/** Method for getting the unscaled version of the x vector */
SmartPtr<const Vector> get_unscaled_x(const Vector& x);
//@}
/** @name Algorithmic parameters */
//@{
/** relaxation factor for the bounds */
Number bound_relax_factor_;
/** Flag indicating whether the primal variables should be
* projected back into original bounds are optimization. */
bool honor_original_bounds_;
/** Flag indicating whether the TNLP with identical structure has
* already been solved before. */
bool warm_start_same_structure_;
/** Flag indicating what Hessian information is to be used. */
HessianApproximationType hessian_approximation_;
/** Flag indicating in which space Hessian is to be approximated. */
HessianApproximationSpace hessian_approximation_space_;
/** Flag indicating whether it is desired to check if there are
* Nan or Inf entries in first and second derivative matrices. */
bool check_derivatives_for_naninf_;
/** Flag indicating if we need to ask for equality constraint
* Jacobians only once */
bool jac_c_constant_;
/** Flag indicating if we need to ask for inequality constraint
* Jacobians only once */
bool jac_d_constant_;
/** Flag indicating if we need to ask for Hessian only once */
bool hessian_constant_;
//@}
/** @name Counters for the function evaluations */
//@{
Index f_evals_;
Index grad_f_evals_;
Index c_evals_;
Index jac_c_evals_;
Index d_evals_;
Index jac_d_evals_;
Index h_evals_;
//@}
/** Flag indicating if initialization method has been called */
bool initialized_;
/**@name Timing statistics for the function evaluations. */
//@{
TimedTask f_eval_time_;
TimedTask grad_f_eval_time_;
TimedTask c_eval_time_;
TimedTask jac_c_eval_time_;
TimedTask d_eval_time_;
TimedTask jac_d_eval_time_;
TimedTask h_eval_time_;
//@}
};
} // namespace Ipopt
#endif