openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

427 lines
15 KiB

// Copyright (C) 2004, 2008 International Business Machines and others.
// All Rights Reserved.
// This code is published under the Eclipse Public License.
//
// $Id: IpTNLPAdapter.hpp 2269 2013-05-05 11:32:40Z stefan $
//
// Authors: Carl Laird, Andreas Waechter IBM 2004-08-13
#ifndef __IPTNLPADAPTER_HPP__
#define __IPTNLPADAPTER_HPP__
#include "IpNLP.hpp"
#include "IpTNLP.hpp"
#include "IpOrigIpoptNLP.hpp"
#include <list>
namespace Ipopt
{
// forward declarations
class ExpansionMatrix;
class ExpansionMatrixSpace;
class IteratesVector;
class TDependencyDetector;
/** This class Adapts the TNLP interface so it looks like an NLP interface.
* This is an Adapter class (Design Patterns) that converts a TNLP to an
* NLP. This allows users to write to the "more convenient" TNLP interface.
*/
class TNLPAdapter : public NLP
{
public:
/**@name Constructors/Destructors */
//@{
/** Default constructor */
TNLPAdapter(const SmartPtr<TNLP> tnlp,
const SmartPtr<const Journalist> jnlst = NULL);
/** Default destructor */
virtual ~TNLPAdapter();
//@}
/**@name Exceptions */
//@{
DECLARE_STD_EXCEPTION(INVALID_TNLP);
DECLARE_STD_EXCEPTION(ERROR_IN_TNLP_DERIVATIVE_TEST);
//@}
/** @name TNLPAdapter Initialization. */
//@{
virtual bool ProcessOptions(const OptionsList& options,
const std::string& prefix);
/** Method for creating the derived vector / matrix types
* (Do not delete these, the ). */
virtual bool GetSpaces(SmartPtr<const VectorSpace>& x_space,
SmartPtr<const VectorSpace>& c_space,
SmartPtr<const VectorSpace>& d_space,
SmartPtr<const VectorSpace>& x_l_space,
SmartPtr<const MatrixSpace>& px_l_space,
SmartPtr<const VectorSpace>& x_u_space,
SmartPtr<const MatrixSpace>& px_u_space,
SmartPtr<const VectorSpace>& d_l_space,
SmartPtr<const MatrixSpace>& pd_l_space,
SmartPtr<const VectorSpace>& d_u_space,
SmartPtr<const MatrixSpace>& pd_u_space,
SmartPtr<const MatrixSpace>& Jac_c_space,
SmartPtr<const MatrixSpace>& Jac_d_space,
SmartPtr<const SymMatrixSpace>& Hess_lagrangian_space);
/** Method for obtaining the bounds information */
virtual bool GetBoundsInformation(const Matrix& Px_L,
Vector& x_L,
const Matrix& Px_U,
Vector& x_U,
const Matrix& Pd_L,
Vector& d_L,
const Matrix& Pd_U,
Vector& d_U);
/** Method for obtaining the starting point
* for all the iterates. */
virtual bool GetStartingPoint(
SmartPtr<Vector> x,
bool need_x,
SmartPtr<Vector> y_c,
bool need_y_c,
SmartPtr<Vector> y_d,
bool need_y_d,
SmartPtr<Vector> z_L,
bool need_z_L,
SmartPtr<Vector> z_U,
bool need_z_U
);
/** Method for obtaining an entire iterate as a warmstart point.
* The incoming IteratesVector has to be filled. */
virtual bool GetWarmStartIterate(IteratesVector& warm_start_iterate);
//@}
/** @name TNLPAdapter evaluation routines. */
//@{
virtual bool Eval_f(const Vector& x, Number& f);
virtual bool Eval_grad_f(const Vector& x, Vector& g_f);
virtual bool Eval_c(const Vector& x, Vector& c);
virtual bool Eval_jac_c(const Vector& x, Matrix& jac_c);
virtual bool Eval_d(const Vector& x, Vector& d);
virtual bool Eval_jac_d(const Vector& x, Matrix& jac_d);
virtual bool Eval_h(const Vector& x,
Number obj_factor,
const Vector& yc,
const Vector& yd,
SymMatrix& h);
virtual void GetScalingParameters(
const SmartPtr<const VectorSpace> x_space,
const SmartPtr<const VectorSpace> c_space,
const SmartPtr<const VectorSpace> d_space,
Number& obj_scaling,
SmartPtr<Vector>& x_scaling,
SmartPtr<Vector>& c_scaling,
SmartPtr<Vector>& d_scaling) const;
//@}
/** @name Solution Reporting Methods */
//@{
virtual void FinalizeSolution(SolverReturn status,
const Vector& x,
const Vector& z_L, const Vector& z_U,
const Vector& c, const Vector& d,
const Vector& y_c, const Vector& y_d,
Number obj_value,
const IpoptData* ip_data,
IpoptCalculatedQuantities* ip_cq);
virtual bool IntermediateCallBack(AlgorithmMode mode,
Index iter, Number obj_value,
Number inf_pr, Number inf_du,
Number mu, Number d_norm,
Number regularization_size,
Number alpha_du, Number alpha_pr,
Index ls_trials,
const IpoptData* ip_data,
IpoptCalculatedQuantities* ip_cq);
//@}
/** Method returning information on quasi-Newton approximation. */
virtual void
GetQuasiNewtonApproximationSpaces(SmartPtr<VectorSpace>& approx_space,
SmartPtr<Matrix>& P_approx);
/** Enum for treatment of fixed variables option */
enum FixedVariableTreatmentEnum
{
MAKE_PARAMETER=0,
MAKE_CONSTRAINT,
RELAX_BOUNDS
};
/** Enum for specifying which derivative test is to be performed. */
enum DerivativeTestEnum
{
NO_TEST=0,
FIRST_ORDER_TEST,
SECOND_ORDER_TEST,
ONLY_SECOND_ORDER_TEST
};
/** Enum for specifying technique for computing Jacobian */
enum JacobianApproxEnum
{
JAC_EXACT=0,
JAC_FINDIFF_VALUES
};
/** Method for performing the derivative test */
bool CheckDerivatives(DerivativeTestEnum deriv_test,
Index deriv_test_start_index);
/** @name Methods for IpoptType */
//@{
static void RegisterOptions(SmartPtr<RegisteredOptions> roptions);
//@}
/** Accessor method for the underlying TNLP. */
SmartPtr<TNLP> tnlp() const
{
return tnlp_;
}
/** @name Methods for translating data for IpoptNLP into the TNLP
* data. These methods are used to obtain the current (or
* final) data for the TNLP formulation from the IpoptNLP
* structure. */
//@{
/** Sort the primal variables, and add the fixed values in x */
void ResortX(const Vector& x, Number* x_orig);
void ResortG(const Vector& c, const Vector& d, Number *g_orig);
void ResortBnds(const Vector& x_L, Number* x_L_orig,
const Vector& x_U, Number* x_U_orig);
//@}
private:
/**@name Default Compiler Generated Methods
* (Hidden to avoid implicit creation/calling).
* These methods are not implemented and
* we do not want the compiler to implement
* them for us, so we declare them private
* and do not define them. This ensures that
* they will not be implicitly created/called. */
//@{
/** Copy Constructor */
TNLPAdapter(const TNLPAdapter&);
/** Overloaded Equals Operator */
void operator=(const TNLPAdapter&);
//@}
/** @name Method implementing the detection of linearly dependent
equality constraints */
bool DetermineDependentConstraints(Index n_x_var,
const Index* x_not_fixed_map,
const Number* x_l, const Number* x_u,
const Number* g_l, const Number* g_u,
Index n_c, const Index* c_map,
std::list<Index>& c_deps);
/** Pointer to the TNLP class (class specific to Number* vectors and
* harwell triplet matrices) */
SmartPtr<TNLP> tnlp_;
/** Journalist */
SmartPtr<const Journalist> jnlst_;
/** Object that can be used to detect linearly dependent rows in
* the equality constraint Jacobian */
SmartPtr<TDependencyDetector> dependency_detector_;
/**@name Algorithmic parameters */
//@{
/** Value for a lower bound that denotes -infinity */
Number nlp_lower_bound_inf_;
/** Value for a upper bound that denotes infinity */
Number nlp_upper_bound_inf_;
/** Flag indicating how fixed variables should be handled */
FixedVariableTreatmentEnum fixed_variable_treatment_;
/* Determines relaxation of fixing bound for RELAX_BOUNDS. */
Number bound_relax_factor_;
/* Maximal slack for one-sidedly bounded variables. If a
* variable has only one bound, say a lower bound xL, then an
* upper bound xL + max_onesided_bound_slack_. If this value is
* zero, no upper bound is added. */
/* Took this out: Number max_onesided_bound_slack_; */
/** Enum indicating whether and which derivative test should be
* performed at starting point. */
DerivativeTestEnum derivative_test_;
/** Size of the perturbation for the derivative test */
Number derivative_test_perturbation_;
/** Relative threshold for marking deviation from finite
* difference test */
Number derivative_test_tol_;
/** Flag indicating if all test values should be printed, or only
* those violating the threshold. */
bool derivative_test_print_all_;
/** Index of first quantity to be checked. */
Index derivative_test_first_index_;
/** Flag indicating whether the TNLP with identical structure has
* already been solved before. */
bool warm_start_same_structure_;
/** Flag indicating what Hessian information is to be used. */
HessianApproximationType hessian_approximation_;
/** Number of linear variables. */
Index num_linear_variables_;
/** Flag indicating how Jacobian is computed. */
JacobianApproxEnum jacobian_approximation_;
/** Size of the perturbation for the derivative approximation */
Number findiff_perturbation_;
/** Maximal perturbation of the initial point */
Number point_perturbation_radius_;
/** Flag indicating if rhs should be considered during dependency
* detection */
bool dependency_detection_with_rhs_;
/** Overall convergence tolerance */
Number tol_;
//@}
/**@name Problem Size Data */
//@{
/** full dimension of x (fixed + non-fixed) */
Index n_full_x_;
/** full dimension of g (c + d) */
Index n_full_g_;
/** non-zeros of the jacobian of c */
Index nz_jac_c_;
/** non-zeros of the jacobian of c without added constraints for
* fixed variables. */
Index nz_jac_c_no_extra_;
/** non-zeros of the jacobian of d */
Index nz_jac_d_;
/** number of non-zeros in full-size Jacobian of g */
Index nz_full_jac_g_;
/** number of non-zeros in full-size Hessian */
Index nz_full_h_;
/** number of non-zeros in the non-fixed-size Hessian */
Index nz_h_;
/** Number of fixed variables */
Index n_x_fixed_;
//@}
/** Numbering style of variables and constraints */
TNLP::IndexStyleEnum index_style_;
/** @name Local copy of spaces (for warm start) */
//@{
SmartPtr<const VectorSpace> x_space_;
SmartPtr<const VectorSpace> c_space_;
SmartPtr<const VectorSpace> d_space_;
SmartPtr<const VectorSpace> x_l_space_;
SmartPtr<const MatrixSpace> px_l_space_;
SmartPtr<const VectorSpace> x_u_space_;
SmartPtr<const MatrixSpace> px_u_space_;
SmartPtr<const VectorSpace> d_l_space_;
SmartPtr<const MatrixSpace> pd_l_space_;
SmartPtr<const VectorSpace> d_u_space_;
SmartPtr<const MatrixSpace> pd_u_space_;
SmartPtr<const MatrixSpace> Jac_c_space_;
SmartPtr<const MatrixSpace> Jac_d_space_;
SmartPtr<const SymMatrixSpace> Hess_lagrangian_space_;
//@}
/**@name Local Copy of the Data */
//@{
Number* full_x_; /** copy of the full x vector (fixed & non-fixed) */
Number* full_lambda_; /** copy of lambda (yc & yd) */
Number* full_g_; /** copy of g (c & d) */
Number* jac_g_; /** the values for the full jacobian of g */
Number* c_rhs_; /** the rhs values of c */
//@}
/**@name Tags for deciding when to update internal copies of vectors */
//@{
TaggedObject::Tag x_tag_for_iterates_;
TaggedObject::Tag y_c_tag_for_iterates_;
TaggedObject::Tag y_d_tag_for_iterates_;
TaggedObject::Tag x_tag_for_g_;
TaggedObject::Tag x_tag_for_jac_g_;
//@}
/**@name Methods to update the values in the local copies of vectors */
//@{
bool update_local_x(const Vector& x);
bool update_local_lambda(const Vector& y_c, const Vector& y_d);
//@}
/**@name Internal routines for evaluating g and jac_g (values stored since
* they are used in both c and d routines */
//@{
bool internal_eval_g(bool new_x);
bool internal_eval_jac_g(bool new_x);
//@}
/** @name Internal methods for dealing with finite difference
approxation */
//@{
/** Initialize sparsity structure for finite difference Jacobian */
void initialize_findiff_jac(const Index* iRow, const Index* jCol);
//@}
/**@name Internal Permutation Spaces and matrices
*/
//@{
/** Expansion from fixed x (ipopt) to full x */
SmartPtr<ExpansionMatrix> P_x_full_x_;
SmartPtr<ExpansionMatrixSpace> P_x_full_x_space_;
/** Expansion from fixed x_L (ipopt) to full x */
SmartPtr<ExpansionMatrix> P_x_x_L_;
SmartPtr<ExpansionMatrixSpace> P_x_x_L_space_;
/** Expansion from fixed x_U (ipopt) to full x */
SmartPtr<ExpansionMatrix> P_x_x_U_;
SmartPtr<ExpansionMatrixSpace> P_x_x_U_space_;
/** Expansion from c only (ipopt) to full ampl c */
SmartPtr<ExpansionMatrixSpace> P_c_g_space_;
SmartPtr<ExpansionMatrix> P_c_g_;
/** Expansion from d only (ipopt) to full ampl d */
SmartPtr<ExpansionMatrixSpace> P_d_g_space_;
SmartPtr<ExpansionMatrix> P_d_g_;
Index* jac_idx_map_;
Index* h_idx_map_;
/** Position of fixed variables. This is required for a warm start */
Index* x_fixed_map_;
//@}
/** @name Data for finite difference approximations of derivatives */
//@{
/** Number of unique nonzeros in constraint Jacobian */
Index findiff_jac_nnz_;
/** Start position for nonzero indices in ja for each column of
Jacobian */
Index* findiff_jac_ia_;
/** Ordered by columns, for each column the row indices in
Jacobian */
Index* findiff_jac_ja_;
/** Position of entry in original triplet matrix */
Index* findiff_jac_postriplet_;
/** Copy of the lower bounds */
Number* findiff_x_l_;
/** Copy of the upper bounds */
Number* findiff_x_u_;
//@}
};
} // namespace Ipopt
#endif