You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							289 lines
						
					
					
						
							12 KiB
						
					
					
				
			
		
		
	
	
							289 lines
						
					
					
						
							12 KiB
						
					
					
				| #!/usr/bin/env python3
 | |
| 
 | |
| import sys
 | |
| 
 | |
| import numpy as np
 | |
| import sympy as sp
 | |
| 
 | |
| from selfdrive.locationd.models.constants import ObservationKind
 | |
| from rednose.helpers.ekf_sym import EKF_sym, gen_code
 | |
| from rednose.helpers.sympy_helpers import euler_rotate, quat_matrix_r, quat_rotate
 | |
| 
 | |
| EARTH_GM = 3.986005e14  # m^3/s^2 (gravitational constant * mass of earth)
 | |
| 
 | |
| 
 | |
| class States():
 | |
|   ECEF_POS = slice(0, 3)  # x, y and z in ECEF in meters
 | |
|   ECEF_ORIENTATION = slice(3, 7)  # quat for pose of phone in ecef
 | |
|   ECEF_VELOCITY = slice(7, 10)  # ecef velocity in m/s
 | |
|   ANGULAR_VELOCITY = slice(10, 13)  # roll, pitch and yaw rates in device frame in radians/s
 | |
|   GYRO_BIAS = slice(13, 16)  # roll, pitch and yaw biases
 | |
|   ODO_SCALE = slice(16, 17)  # odometer scale
 | |
|   ACCELERATION = slice(17, 20)  # Acceleration in device frame in m/s**2
 | |
|   IMU_OFFSET = slice(20, 23)  # imu offset angles in radians
 | |
| 
 | |
|   # Error-state has different slices because it is an ESKF
 | |
|   ECEF_POS_ERR = slice(0, 3)
 | |
|   ECEF_ORIENTATION_ERR = slice(3, 6)  # euler angles for orientation error
 | |
|   ECEF_VELOCITY_ERR = slice(6, 9)
 | |
|   ANGULAR_VELOCITY_ERR = slice(9, 12)
 | |
|   GYRO_BIAS_ERR = slice(12, 15)
 | |
|   ODO_SCALE_ERR = slice(15, 16)
 | |
|   ACCELERATION_ERR = slice(16, 19)
 | |
|   IMU_OFFSET_ERR = slice(19, 22)
 | |
| 
 | |
| 
 | |
| class LiveKalman():
 | |
|   name = 'live'
 | |
| 
 | |
|   initial_x = np.array([-2.7e6, 4.2e6, 3.8e6,
 | |
|                         1, 0, 0, 0,
 | |
|                         0, 0, 0,
 | |
|                         0, 0, 0,
 | |
|                         0, 0, 0,
 | |
|                         1,
 | |
|                         0, 0, 0,
 | |
|                         0, 0, 0])
 | |
| 
 | |
|   # state covariance
 | |
|   initial_P_diag = np.array([1e16, 1e16, 1e16,
 | |
|                              1e6, 1e6, 1e6,
 | |
|                              1e4, 1e4, 1e4,
 | |
|                              1**2, 1**2, 1**2,
 | |
|                              0.05**2, 0.05**2, 0.05**2,
 | |
|                              0.02**2,
 | |
|                              1**2, 1**2, 1**2,
 | |
|                              (0.01)**2, (0.01)**2, (0.01)**2])
 | |
| 
 | |
|   # process noise
 | |
|   Q = np.diag([0.03**2, 0.03**2, 0.03**2,
 | |
|                0.001**2, 0.001*2, 0.001**2,
 | |
|                0.01**2, 0.01**2, 0.01**2,
 | |
|                0.1**2, 0.1**2, 0.1**2,
 | |
|                (0.005 / 100)**2, (0.005 / 100)**2, (0.005 / 100)**2,
 | |
|                (0.02 / 100)**2,
 | |
|                3**2, 3**2, 3**2,
 | |
|                (0.05 / 60)**2, (0.05 / 60)**2, (0.05 / 60)**2])
 | |
| 
 | |
|   @staticmethod
 | |
|   def generate_code(generated_dir):
 | |
|     name = LiveKalman.name
 | |
|     dim_state = LiveKalman.initial_x.shape[0]
 | |
|     dim_state_err = LiveKalman.initial_P_diag.shape[0]
 | |
| 
 | |
|     state_sym = sp.MatrixSymbol('state', dim_state, 1)
 | |
|     state = sp.Matrix(state_sym)
 | |
|     x, y, z = state[States.ECEF_POS, :]
 | |
|     q = state[States.ECEF_ORIENTATION, :]
 | |
|     v = state[States.ECEF_VELOCITY, :]
 | |
|     vx, vy, vz = v
 | |
|     omega = state[States.ANGULAR_VELOCITY, :]
 | |
|     vroll, vpitch, vyaw = omega
 | |
|     roll_bias, pitch_bias, yaw_bias = state[States.GYRO_BIAS, :]
 | |
|     odo_scale = state[States.ODO_SCALE, :][0, :]
 | |
|     acceleration = state[States.ACCELERATION, :]
 | |
|     imu_angles = state[States.IMU_OFFSET, :]
 | |
| 
 | |
|     dt = sp.Symbol('dt')
 | |
| 
 | |
|     # calibration and attitude rotation matrices
 | |
|     quat_rot = quat_rotate(*q)
 | |
| 
 | |
|     # Got the quat predict equations from here
 | |
|     # A New Quaternion-Based Kalman Filter for
 | |
|     # Real-Time Attitude Estimation Using the Two-Step
 | |
|     # Geometrically-Intuitive Correction Algorithm
 | |
|     A = 0.5 * sp.Matrix([[0, -vroll, -vpitch, -vyaw],
 | |
|                          [vroll, 0, vyaw, -vpitch],
 | |
|                          [vpitch, -vyaw, 0, vroll],
 | |
|                          [vyaw, vpitch, -vroll, 0]])
 | |
|     q_dot = A * q
 | |
| 
 | |
|     # Time derivative of the state as a function of state
 | |
|     state_dot = sp.Matrix(np.zeros((dim_state, 1)))
 | |
|     state_dot[States.ECEF_POS, :] = v
 | |
|     state_dot[States.ECEF_ORIENTATION, :] = q_dot
 | |
|     state_dot[States.ECEF_VELOCITY, 0] = quat_rot * acceleration
 | |
| 
 | |
|     # Basic descretization, 1st order intergrator
 | |
|     # Can be pretty bad if dt is big
 | |
|     f_sym = state + dt * state_dot
 | |
| 
 | |
|     state_err_sym = sp.MatrixSymbol('state_err', dim_state_err, 1)
 | |
|     state_err = sp.Matrix(state_err_sym)
 | |
|     quat_err = state_err[States.ECEF_ORIENTATION_ERR, :]
 | |
|     v_err = state_err[States.ECEF_VELOCITY_ERR, :]
 | |
|     omega_err = state_err[States.ANGULAR_VELOCITY_ERR, :]
 | |
|     acceleration_err = state_err[States.ACCELERATION_ERR, :]
 | |
| 
 | |
|     # Time derivative of the state error as a function of state error and state
 | |
|     quat_err_matrix = euler_rotate(quat_err[0], quat_err[1], quat_err[2])
 | |
|     q_err_dot = quat_err_matrix * quat_rot * (omega + omega_err)
 | |
|     state_err_dot = sp.Matrix(np.zeros((dim_state_err, 1)))
 | |
|     state_err_dot[States.ECEF_POS_ERR, :] = v_err
 | |
|     state_err_dot[States.ECEF_ORIENTATION_ERR, :] = q_err_dot
 | |
|     state_err_dot[States.ECEF_VELOCITY_ERR, :] = quat_err_matrix * quat_rot * (acceleration + acceleration_err)
 | |
|     f_err_sym = state_err + dt * state_err_dot
 | |
| 
 | |
|     # Observation matrix modifier
 | |
|     H_mod_sym = sp.Matrix(np.zeros((dim_state, dim_state_err)))
 | |
|     H_mod_sym[States.ECEF_POS, States.ECEF_POS_ERR] = np.eye(States.ECEF_POS.stop - States.ECEF_POS.start)
 | |
|     H_mod_sym[States.ECEF_ORIENTATION, States.ECEF_ORIENTATION_ERR] = 0.5 * quat_matrix_r(state[3:7])[:, 1:]
 | |
|     H_mod_sym[States.ECEF_ORIENTATION.stop:, States.ECEF_ORIENTATION_ERR.stop:] = np.eye(dim_state - States.ECEF_ORIENTATION.stop)
 | |
| 
 | |
|     # these error functions are defined so that say there
 | |
|     # is a nominal x and true x:
 | |
|     # true x = err_function(nominal x, delta x)
 | |
|     # delta x = inv_err_function(nominal x, true x)
 | |
|     nom_x = sp.MatrixSymbol('nom_x', dim_state, 1)
 | |
|     true_x = sp.MatrixSymbol('true_x', dim_state, 1)
 | |
|     delta_x = sp.MatrixSymbol('delta_x', dim_state_err, 1)
 | |
| 
 | |
|     err_function_sym = sp.Matrix(np.zeros((dim_state, 1)))
 | |
|     delta_quat = sp.Matrix(np.ones((4)))
 | |
|     delta_quat[1:, :] = sp.Matrix(0.5 * delta_x[States.ECEF_ORIENTATION_ERR, :])
 | |
|     err_function_sym[States.ECEF_POS, :] = sp.Matrix(nom_x[States.ECEF_POS, :] + delta_x[States.ECEF_POS_ERR, :])
 | |
|     err_function_sym[States.ECEF_ORIENTATION, 0] = quat_matrix_r(nom_x[States.ECEF_ORIENTATION, 0]) * delta_quat
 | |
|     err_function_sym[States.ECEF_ORIENTATION.stop:, :] = sp.Matrix(nom_x[States.ECEF_ORIENTATION.stop:, :] + delta_x[States.ECEF_ORIENTATION_ERR.stop:, :])
 | |
| 
 | |
|     inv_err_function_sym = sp.Matrix(np.zeros((dim_state_err, 1)))
 | |
|     inv_err_function_sym[States.ECEF_POS_ERR, 0] = sp.Matrix(-nom_x[States.ECEF_POS, 0] + true_x[States.ECEF_POS, 0])
 | |
|     delta_quat = quat_matrix_r(nom_x[States.ECEF_ORIENTATION, 0]).T * true_x[States.ECEF_ORIENTATION, 0]
 | |
|     inv_err_function_sym[States.ECEF_ORIENTATION_ERR, 0] = sp.Matrix(2 * delta_quat[1:])
 | |
|     inv_err_function_sym[States.ECEF_ORIENTATION_ERR.stop:, 0] = sp.Matrix(-nom_x[States.ECEF_ORIENTATION.stop:, 0] + true_x[States.ECEF_ORIENTATION.stop:, 0])
 | |
| 
 | |
|     eskf_params = [[err_function_sym, nom_x, delta_x],
 | |
|                    [inv_err_function_sym, nom_x, true_x],
 | |
|                    H_mod_sym, f_err_sym, state_err_sym]
 | |
|     #
 | |
|     # Observation functions
 | |
|     #
 | |
|     #imu_rot = euler_rotate(*imu_angles)
 | |
|     h_gyro_sym = sp.Matrix([vroll + roll_bias,
 | |
|                                       vpitch + pitch_bias,
 | |
|                                       vyaw + yaw_bias])
 | |
| 
 | |
|     pos = sp.Matrix([x, y, z])
 | |
|     gravity = quat_rot.T * ((EARTH_GM / ((x**2 + y**2 + z**2)**(3.0 / 2.0))) * pos)
 | |
|     h_acc_sym = (gravity + acceleration)
 | |
|     h_phone_rot_sym = sp.Matrix([vroll, vpitch, vyaw])
 | |
| 
 | |
|     speed = sp.sqrt(vx**2 + vy**2 + vz**2 + 1e-6)
 | |
|     h_speed_sym = sp.Matrix([speed * odo_scale])
 | |
| 
 | |
|     h_pos_sym = sp.Matrix([x, y, z])
 | |
|     h_vel_sym = sp.Matrix([vx, vy, vz])
 | |
|     h_orientation_sym = q
 | |
|     h_imu_frame_sym = sp.Matrix(imu_angles)
 | |
| 
 | |
|     h_relative_motion = sp.Matrix(quat_rot.T * v)
 | |
| 
 | |
|     obs_eqs = [[h_speed_sym, ObservationKind.ODOMETRIC_SPEED, None],
 | |
|                [h_gyro_sym, ObservationKind.PHONE_GYRO, None],
 | |
|                [h_phone_rot_sym, ObservationKind.NO_ROT, None],
 | |
|                [h_acc_sym, ObservationKind.PHONE_ACCEL, None],
 | |
|                [h_pos_sym, ObservationKind.ECEF_POS, None],
 | |
|                [h_vel_sym, ObservationKind.ECEF_VEL, None],
 | |
|                [h_orientation_sym, ObservationKind.ECEF_ORIENTATION_FROM_GPS, None],
 | |
|                [h_relative_motion, ObservationKind.CAMERA_ODO_TRANSLATION, None],
 | |
|                [h_phone_rot_sym, ObservationKind.CAMERA_ODO_ROTATION, None],
 | |
|                [h_imu_frame_sym, ObservationKind.IMU_FRAME, None]]
 | |
| 
 | |
|     gen_code(generated_dir, name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state_err, eskf_params)
 | |
| 
 | |
|   def __init__(self, generated_dir):
 | |
|     self.dim_state = self.initial_x.shape[0]
 | |
|     self.dim_state_err = self.initial_P_diag.shape[0]
 | |
| 
 | |
|     self.obs_noise = {ObservationKind.ODOMETRIC_SPEED: np.atleast_2d(0.2**2),
 | |
|                       ObservationKind.PHONE_GYRO: np.diag([0.025**2, 0.025**2, 0.025**2]),
 | |
|                       ObservationKind.PHONE_ACCEL: np.diag([.5**2, .5**2, .5**2]),
 | |
|                       ObservationKind.CAMERA_ODO_ROTATION: np.diag([0.05**2, 0.05**2, 0.05**2]),
 | |
|                       ObservationKind.IMU_FRAME: np.diag([0.05**2, 0.05**2, 0.05**2]),
 | |
|                       ObservationKind.NO_ROT: np.diag([0.00025**2, 0.00025**2, 0.00025**2]),
 | |
|                       ObservationKind.ECEF_POS: np.diag([5**2, 5**2, 5**2]),
 | |
|                       ObservationKind.ECEF_VEL: np.diag([.5**2, .5**2, .5**2]),
 | |
|                       ObservationKind.ECEF_ORIENTATION_FROM_GPS: np.diag([.2**2, .2**2, .2**2, .2**2])}
 | |
| 
 | |
|     # init filter
 | |
|     self.filter = EKF_sym(generated_dir, self.name, self.Q, self.initial_x, np.diag(self.initial_P_diag), self.dim_state, self.dim_state_err, max_rewind_age=0.2)
 | |
| 
 | |
|   @property
 | |
|   def x(self):
 | |
|     return self.filter.state()
 | |
| 
 | |
|   @property
 | |
|   def t(self):
 | |
|     return self.filter.filter_time
 | |
| 
 | |
|   @property
 | |
|   def P(self):
 | |
|     return self.filter.covs()
 | |
| 
 | |
|   def rts_smooth(self, estimates):
 | |
|     return self.filter.rts_smooth(estimates, norm_quats=True)
 | |
| 
 | |
|   def init_state(self, state, covs_diag=None, covs=None, filter_time=None):
 | |
|     if covs_diag is not None:
 | |
|       P = np.diag(covs_diag)
 | |
|     elif covs is not None:
 | |
|       P = covs
 | |
|     else:
 | |
|       P = self.filter.covs()
 | |
|     self.filter.init_state(state, P, filter_time)
 | |
| 
 | |
|   def predict_and_observe(self, t, kind, meas, R=None):
 | |
|     if len(meas) > 0:
 | |
|       meas = np.atleast_2d(meas)
 | |
|     if kind == ObservationKind.CAMERA_ODO_TRANSLATION:
 | |
|       r = self.predict_and_update_odo_trans(meas, t, kind)
 | |
|     elif kind == ObservationKind.CAMERA_ODO_ROTATION:
 | |
|       r = self.predict_and_update_odo_rot(meas, t, kind)
 | |
|     elif kind == ObservationKind.ODOMETRIC_SPEED:
 | |
|       r = self.predict_and_update_odo_speed(meas, t, kind)
 | |
|     else:
 | |
|       if R is None:
 | |
|         R = self.get_R(kind, len(meas))
 | |
|       elif len(R.shape) == 2:
 | |
|         R = R[None]
 | |
|       r = self.filter.predict_and_update_batch(t, kind, meas, R)
 | |
| 
 | |
|     # Normalize quats
 | |
|     quat_norm = np.linalg.norm(self.filter.x[3:7, 0])
 | |
|     self.filter.x[States.ECEF_ORIENTATION, 0] = self.filter.x[States.ECEF_ORIENTATION, 0] / quat_norm
 | |
| 
 | |
|     return r
 | |
| 
 | |
|   def get_R(self, kind, n):
 | |
|     obs_noise = self.obs_noise[kind]
 | |
|     dim = obs_noise.shape[0]
 | |
|     R = np.zeros((n, dim, dim))
 | |
|     for i in range(n):
 | |
|       R[i, :, :] = obs_noise
 | |
|     return R
 | |
| 
 | |
|   def predict_and_update_odo_speed(self, speed, t, kind):
 | |
|     z = np.array(speed)
 | |
|     R = np.zeros((len(speed), 1, 1))
 | |
|     for i, _ in enumerate(z):
 | |
|       R[i, :, :] = np.diag([0.2**2])
 | |
|     return self.filter.predict_and_update_batch(t, kind, z, R)
 | |
| 
 | |
|   def predict_and_update_odo_trans(self, trans, t, kind):
 | |
|     z = trans[:, :3]
 | |
|     R = np.zeros((len(trans), 3, 3))
 | |
|     for i, _ in enumerate(z):
 | |
|         R[i, :, :] = np.diag(trans[i, 3:]**2)
 | |
|     return self.filter.predict_and_update_batch(t, kind, z, R)
 | |
| 
 | |
|   def predict_and_update_odo_rot(self, rot, t, kind):
 | |
|     z = rot[:, :3]
 | |
|     R = np.zeros((len(rot), 3, 3))
 | |
|     for i, _ in enumerate(z):
 | |
|         R[i, :, :] = np.diag(rot[i, 3:]**2)
 | |
|     return self.filter.predict_and_update_batch(t, kind, z, R)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|   generated_dir = sys.argv[2]
 | |
|   LiveKalman.generate_code(generated_dir)
 | |
| 
 |