You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							813 lines
						
					
					
						
							26 KiB
						
					
					
				
			
		
		
	
	
							813 lines
						
					
					
						
							26 KiB
						
					
					
				| // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
 | |
| // Licensed under the MIT License:
 | |
| //
 | |
| // Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
| // of this software and associated documentation files (the "Software"), to deal
 | |
| // in the Software without restriction, including without limitation the rights
 | |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
| // copies of the Software, and to permit persons to whom the Software is
 | |
| // furnished to do so, subject to the following conditions:
 | |
| //
 | |
| // The above copyright notice and this permission notice shall be included in
 | |
| // all copies or substantial portions of the Software.
 | |
| //
 | |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
| // THE SOFTWARE.
 | |
| 
 | |
| #ifndef KJ_ARRAY_H_
 | |
| #define KJ_ARRAY_H_
 | |
| 
 | |
| #if defined(__GNUC__) && !KJ_HEADER_WARNINGS
 | |
| #pragma GCC system_header
 | |
| #endif
 | |
| 
 | |
| #include "common.h"
 | |
| #include <string.h>
 | |
| #include <initializer_list>
 | |
| 
 | |
| namespace kj {
 | |
| 
 | |
| // =======================================================================================
 | |
| // ArrayDisposer -- Implementation details.
 | |
| 
 | |
| class ArrayDisposer {
 | |
|   // Much like Disposer from memory.h.
 | |
| 
 | |
| protected:
 | |
|   // Do not declare a destructor, as doing so will force a global initializer for
 | |
|   // HeapArrayDisposer::instance.
 | |
| 
 | |
|   virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
 | |
|                            size_t capacity, void (*destroyElement)(void*)) const = 0;
 | |
|   // Disposes of the array.  `destroyElement` invokes the destructor of each element, or is nullptr
 | |
|   // if the elements have trivial destructors.  `capacity` is the amount of space that was
 | |
|   // allocated while `elementCount` is the number of elements that were actually constructed;
 | |
|   // these are always the same number for Array<T> but may be different when using ArrayBuilder<T>.
 | |
| 
 | |
| public:
 | |
| 
 | |
|   template <typename T>
 | |
|   void dispose(T* firstElement, size_t elementCount, size_t capacity) const;
 | |
|   // Helper wrapper around disposeImpl().
 | |
|   //
 | |
|   // Callers must not call dispose() on the same array twice, even if the first call throws
 | |
|   // an exception.
 | |
| 
 | |
| private:
 | |
|   template <typename T, bool hasTrivialDestructor = __has_trivial_destructor(T)>
 | |
|   struct Dispose_;
 | |
| };
 | |
| 
 | |
| class ExceptionSafeArrayUtil {
 | |
|   // Utility class that assists in constructing or destroying elements of an array, where the
 | |
|   // constructor or destructor could throw exceptions.  In case of an exception,
 | |
|   // ExceptionSafeArrayUtil's destructor will call destructors on all elements that have been
 | |
|   // constructed but not destroyed.  Remember that destructors that throw exceptions are required
 | |
|   // to use UnwindDetector to detect unwind and avoid exceptions in this case.  Therefore, no more
 | |
|   // than one exception will be thrown (and the program will not terminate).
 | |
| 
 | |
| public:
 | |
|   inline ExceptionSafeArrayUtil(void* ptr, size_t elementSize, size_t constructedElementCount,
 | |
|                                 void (*destroyElement)(void*))
 | |
|       : pos(reinterpret_cast<byte*>(ptr) + elementSize * constructedElementCount),
 | |
|         elementSize(elementSize), constructedElementCount(constructedElementCount),
 | |
|         destroyElement(destroyElement) {}
 | |
|   KJ_DISALLOW_COPY(ExceptionSafeArrayUtil);
 | |
| 
 | |
|   inline ~ExceptionSafeArrayUtil() noexcept(false) {
 | |
|     if (constructedElementCount > 0) destroyAll();
 | |
|   }
 | |
| 
 | |
|   void construct(size_t count, void (*constructElement)(void*));
 | |
|   // Construct the given number of elements.
 | |
| 
 | |
|   void destroyAll();
 | |
|   // Destroy all elements.  Call this immediately before ExceptionSafeArrayUtil goes out-of-scope
 | |
|   // to ensure that one element throwing an exception does not prevent the others from being
 | |
|   // destroyed.
 | |
| 
 | |
|   void release() { constructedElementCount = 0; }
 | |
|   // Prevent ExceptionSafeArrayUtil's destructor from destroying the constructed elements.
 | |
|   // Call this after you've successfully finished constructing.
 | |
| 
 | |
| private:
 | |
|   byte* pos;
 | |
|   size_t elementSize;
 | |
|   size_t constructedElementCount;
 | |
|   void (*destroyElement)(void*);
 | |
| };
 | |
| 
 | |
| class DestructorOnlyArrayDisposer: public ArrayDisposer {
 | |
| public:
 | |
|   static const DestructorOnlyArrayDisposer instance;
 | |
| 
 | |
|   void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
 | |
|                    size_t capacity, void (*destroyElement)(void*)) const override;
 | |
| };
 | |
| 
 | |
| class NullArrayDisposer: public ArrayDisposer {
 | |
|   // An ArrayDisposer that does nothing.  Can be used to construct a fake Arrays that doesn't
 | |
|   // actually own its content.
 | |
| 
 | |
| public:
 | |
|   static const NullArrayDisposer instance;
 | |
| 
 | |
|   void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
 | |
|                    size_t capacity, void (*destroyElement)(void*)) const override;
 | |
| };
 | |
| 
 | |
| // =======================================================================================
 | |
| // Array
 | |
| 
 | |
| template <typename T>
 | |
| class Array {
 | |
|   // An owned array which will automatically be disposed of (using an ArrayDisposer) in the
 | |
|   // destructor.  Can be moved, but not copied.  Much like Own<T>, but for arrays rather than
 | |
|   // single objects.
 | |
| 
 | |
| public:
 | |
|   inline Array(): ptr(nullptr), size_(0), disposer(nullptr) {}
 | |
|   inline Array(decltype(nullptr)): ptr(nullptr), size_(0), disposer(nullptr) {}
 | |
|   inline Array(Array&& other) noexcept
 | |
|       : ptr(other.ptr), size_(other.size_), disposer(other.disposer) {
 | |
|     other.ptr = nullptr;
 | |
|     other.size_ = 0;
 | |
|   }
 | |
|   inline Array(Array<RemoveConstOrDisable<T>>&& other) noexcept
 | |
|       : ptr(other.ptr), size_(other.size_), disposer(other.disposer) {
 | |
|     other.ptr = nullptr;
 | |
|     other.size_ = 0;
 | |
|   }
 | |
|   inline Array(T* firstElement, size_t size, const ArrayDisposer& disposer)
 | |
|       : ptr(firstElement), size_(size), disposer(&disposer) {}
 | |
| 
 | |
|   KJ_DISALLOW_COPY(Array);
 | |
|   inline ~Array() noexcept { dispose(); }
 | |
| 
 | |
|   inline operator ArrayPtr<T>() {
 | |
|     return ArrayPtr<T>(ptr, size_);
 | |
|   }
 | |
|   inline operator ArrayPtr<const T>() const {
 | |
|     return ArrayPtr<T>(ptr, size_);
 | |
|   }
 | |
|   inline ArrayPtr<T> asPtr() {
 | |
|     return ArrayPtr<T>(ptr, size_);
 | |
|   }
 | |
|   inline ArrayPtr<const T> asPtr() const {
 | |
|     return ArrayPtr<T>(ptr, size_);
 | |
|   }
 | |
| 
 | |
|   inline size_t size() const { return size_; }
 | |
|   inline T& operator[](size_t index) const {
 | |
|     KJ_IREQUIRE(index < size_, "Out-of-bounds Array access.");
 | |
|     return ptr[index];
 | |
|   }
 | |
| 
 | |
|   inline const T* begin() const { return ptr; }
 | |
|   inline const T* end() const { return ptr + size_; }
 | |
|   inline const T& front() const { return *ptr; }
 | |
|   inline const T& back() const { return *(ptr + size_ - 1); }
 | |
|   inline T* begin() { return ptr; }
 | |
|   inline T* end() { return ptr + size_; }
 | |
|   inline T& front() { return *ptr; }
 | |
|   inline T& back() { return *(ptr + size_ - 1); }
 | |
| 
 | |
|   inline ArrayPtr<T> slice(size_t start, size_t end) {
 | |
|     KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice().");
 | |
|     return ArrayPtr<T>(ptr + start, end - start);
 | |
|   }
 | |
|   inline ArrayPtr<const T> slice(size_t start, size_t end) const {
 | |
|     KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice().");
 | |
|     return ArrayPtr<const T>(ptr + start, end - start);
 | |
|   }
 | |
| 
 | |
|   inline ArrayPtr<const byte> asBytes() const { return asPtr().asBytes(); }
 | |
|   inline ArrayPtr<PropagateConst<T, byte>> asBytes() { return asPtr().asBytes(); }
 | |
|   inline ArrayPtr<const char> asChars() const { return asPtr().asChars(); }
 | |
|   inline ArrayPtr<PropagateConst<T, char>> asChars() { return asPtr().asChars(); }
 | |
| 
 | |
|   inline Array<PropagateConst<T, byte>> releaseAsBytes() {
 | |
|     // Like asBytes() but transfers ownership.
 | |
|     static_assert(sizeof(T) == sizeof(byte),
 | |
|         "releaseAsBytes() only possible on arrays with byte-size elements (e.g. chars).");
 | |
|     Array<PropagateConst<T, byte>> result(
 | |
|         reinterpret_cast<PropagateConst<T, byte>*>(ptr), size_, *disposer);
 | |
|     ptr = nullptr;
 | |
|     size_ = 0;
 | |
|     return result;
 | |
|   }
 | |
|   inline Array<PropagateConst<T, char>> releaseAsChars() {
 | |
|     // Like asChars() but transfers ownership.
 | |
|     static_assert(sizeof(T) == sizeof(PropagateConst<T, char>),
 | |
|         "releaseAsChars() only possible on arrays with char-size elements (e.g. bytes).");
 | |
|     Array<PropagateConst<T, char>> result(
 | |
|         reinterpret_cast<PropagateConst<T, char>*>(ptr), size_, *disposer);
 | |
|     ptr = nullptr;
 | |
|     size_ = 0;
 | |
|     return result;
 | |
|   }
 | |
| 
 | |
|   inline bool operator==(decltype(nullptr)) const { return size_ == 0; }
 | |
|   inline bool operator!=(decltype(nullptr)) const { return size_ != 0; }
 | |
| 
 | |
|   inline Array& operator=(decltype(nullptr)) {
 | |
|     dispose();
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   inline Array& operator=(Array&& other) {
 | |
|     dispose();
 | |
|     ptr = other.ptr;
 | |
|     size_ = other.size_;
 | |
|     disposer = other.disposer;
 | |
|     other.ptr = nullptr;
 | |
|     other.size_ = 0;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   T* ptr;
 | |
|   size_t size_;
 | |
|   const ArrayDisposer* disposer;
 | |
| 
 | |
|   inline void dispose() {
 | |
|     // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly
 | |
|     // dispose again.
 | |
|     T* ptrCopy = ptr;
 | |
|     size_t sizeCopy = size_;
 | |
|     if (ptrCopy != nullptr) {
 | |
|       ptr = nullptr;
 | |
|       size_ = 0;
 | |
|       disposer->dispose(ptrCopy, sizeCopy, sizeCopy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   template <typename U>
 | |
|   friend class Array;
 | |
| };
 | |
| 
 | |
| static_assert(!canMemcpy<Array<char>>(), "canMemcpy<>() is broken");
 | |
| 
 | |
| namespace _ {  // private
 | |
| 
 | |
| class HeapArrayDisposer final: public ArrayDisposer {
 | |
| public:
 | |
|   template <typename T>
 | |
|   static T* allocate(size_t count);
 | |
|   template <typename T>
 | |
|   static T* allocateUninitialized(size_t count);
 | |
| 
 | |
|   static const HeapArrayDisposer instance;
 | |
| 
 | |
| private:
 | |
|   static void* allocateImpl(size_t elementSize, size_t elementCount, size_t capacity,
 | |
|                             void (*constructElement)(void*), void (*destroyElement)(void*));
 | |
|   // Allocates and constructs the array.  Both function pointers are null if the constructor is
 | |
|   // trivial, otherwise destroyElement is null if the constructor doesn't throw.
 | |
| 
 | |
|   virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount,
 | |
|                            size_t capacity, void (*destroyElement)(void*)) const override;
 | |
| 
 | |
|   template <typename T, bool hasTrivialConstructor = __has_trivial_constructor(T),
 | |
|                         bool hasNothrowConstructor = __has_nothrow_constructor(T)>
 | |
|   struct Allocate_;
 | |
| };
 | |
| 
 | |
| }  // namespace _ (private)
 | |
| 
 | |
| template <typename T>
 | |
| inline Array<T> heapArray(size_t size) {
 | |
|   // Much like `heap<T>()` from memory.h, allocates a new array on the heap.
 | |
| 
 | |
|   return Array<T>(_::HeapArrayDisposer::allocate<T>(size), size,
 | |
|                   _::HeapArrayDisposer::instance);
 | |
| }
 | |
| 
 | |
| template <typename T> Array<T> heapArray(const T* content, size_t size);
 | |
| template <typename T> Array<T> heapArray(ArrayPtr<T> content);
 | |
| template <typename T> Array<T> heapArray(ArrayPtr<const T> content);
 | |
| template <typename T, typename Iterator> Array<T> heapArray(Iterator begin, Iterator end);
 | |
| template <typename T> Array<T> heapArray(std::initializer_list<T> init);
 | |
| // Allocate a heap array containing a copy of the given content.
 | |
| 
 | |
| template <typename T, typename Container>
 | |
| Array<T> heapArrayFromIterable(Container&& a) { return heapArray<T>(a.begin(), a.end()); }
 | |
| template <typename T>
 | |
| Array<T> heapArrayFromIterable(Array<T>&& a) { return mv(a); }
 | |
| 
 | |
| // =======================================================================================
 | |
| // ArrayBuilder
 | |
| 
 | |
| template <typename T>
 | |
| class ArrayBuilder {
 | |
|   // Class which lets you build an Array<T> specifying the exact constructor arguments for each
 | |
|   // element, rather than starting by default-constructing them.
 | |
| 
 | |
| public:
 | |
|   ArrayBuilder(): ptr(nullptr), pos(nullptr), endPtr(nullptr) {}
 | |
|   ArrayBuilder(decltype(nullptr)): ptr(nullptr), pos(nullptr), endPtr(nullptr) {}
 | |
|   explicit ArrayBuilder(RemoveConst<T>* firstElement, size_t capacity,
 | |
|                         const ArrayDisposer& disposer)
 | |
|       : ptr(firstElement), pos(firstElement), endPtr(firstElement + capacity),
 | |
|         disposer(&disposer) {}
 | |
|   ArrayBuilder(ArrayBuilder&& other)
 | |
|       : ptr(other.ptr), pos(other.pos), endPtr(other.endPtr), disposer(other.disposer) {
 | |
|     other.ptr = nullptr;
 | |
|     other.pos = nullptr;
 | |
|     other.endPtr = nullptr;
 | |
|   }
 | |
|   KJ_DISALLOW_COPY(ArrayBuilder);
 | |
|   inline ~ArrayBuilder() noexcept(false) { dispose(); }
 | |
| 
 | |
|   inline operator ArrayPtr<T>() {
 | |
|     return arrayPtr(ptr, pos);
 | |
|   }
 | |
|   inline operator ArrayPtr<const T>() const {
 | |
|     return arrayPtr(ptr, pos);
 | |
|   }
 | |
|   inline ArrayPtr<T> asPtr() {
 | |
|     return arrayPtr(ptr, pos);
 | |
|   }
 | |
|   inline ArrayPtr<const T> asPtr() const {
 | |
|     return arrayPtr(ptr, pos);
 | |
|   }
 | |
| 
 | |
|   inline size_t size() const { return pos - ptr; }
 | |
|   inline size_t capacity() const { return endPtr - ptr; }
 | |
|   inline T& operator[](size_t index) const {
 | |
|     KJ_IREQUIRE(index < implicitCast<size_t>(pos - ptr), "Out-of-bounds Array access.");
 | |
|     return ptr[index];
 | |
|   }
 | |
| 
 | |
|   inline const T* begin() const { return ptr; }
 | |
|   inline const T* end() const { return pos; }
 | |
|   inline const T& front() const { return *ptr; }
 | |
|   inline const T& back() const { return *(pos - 1); }
 | |
|   inline T* begin() { return ptr; }
 | |
|   inline T* end() { return pos; }
 | |
|   inline T& front() { return *ptr; }
 | |
|   inline T& back() { return *(pos - 1); }
 | |
| 
 | |
|   ArrayBuilder& operator=(ArrayBuilder&& other) {
 | |
|     dispose();
 | |
|     ptr = other.ptr;
 | |
|     pos = other.pos;
 | |
|     endPtr = other.endPtr;
 | |
|     disposer = other.disposer;
 | |
|     other.ptr = nullptr;
 | |
|     other.pos = nullptr;
 | |
|     other.endPtr = nullptr;
 | |
|     return *this;
 | |
|   }
 | |
|   ArrayBuilder& operator=(decltype(nullptr)) {
 | |
|     dispose();
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   template <typename... Params>
 | |
|   T& add(Params&&... params) {
 | |
|     KJ_IREQUIRE(pos < endPtr, "Added too many elements to ArrayBuilder.");
 | |
|     ctor(*pos, kj::fwd<Params>(params)...);
 | |
|     return *pos++;
 | |
|   }
 | |
| 
 | |
|   template <typename Container>
 | |
|   void addAll(Container&& container) {
 | |
|     addAll<decltype(container.begin()), !isReference<Container>()>(
 | |
|         container.begin(), container.end());
 | |
|   }
 | |
| 
 | |
|   template <typename Iterator, bool move = false>
 | |
|   void addAll(Iterator start, Iterator end);
 | |
| 
 | |
|   void removeLast() {
 | |
|     KJ_IREQUIRE(pos > ptr, "No elements present to remove.");
 | |
|     kj::dtor(*--pos);
 | |
|   }
 | |
| 
 | |
|   void truncate(size_t size) {
 | |
|     KJ_IREQUIRE(size <= this->size(), "can't use truncate() to expand");
 | |
| 
 | |
|     T* target = ptr + size;
 | |
|     if (__has_trivial_destructor(T)) {
 | |
|       pos = target;
 | |
|     } else {
 | |
|       while (pos > target) {
 | |
|         kj::dtor(*--pos);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void resize(size_t size) {
 | |
|     KJ_IREQUIRE(size <= capacity(), "can't resize past capacity");
 | |
| 
 | |
|     T* target = ptr + size;
 | |
|     if (target > pos) {
 | |
|       // expand
 | |
|       if (__has_trivial_constructor(T)) {
 | |
|         pos = target;
 | |
|       } else {
 | |
|         while (pos < target) {
 | |
|           kj::ctor(*pos++);
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       // truncate
 | |
|       if (__has_trivial_destructor(T)) {
 | |
|         pos = target;
 | |
|       } else {
 | |
|         while (pos > target) {
 | |
|           kj::dtor(*--pos);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Array<T> finish() {
 | |
|     // We could safely remove this check if we assume that the disposer implementation doesn't
 | |
|     // need to know the original capacity, as is thes case with HeapArrayDisposer since it uses
 | |
|     // operator new() or if we created a custom disposer for ArrayBuilder which stores the capacity
 | |
|     // in a prefix.  But that would make it hard to write cleverer heap allocators, and anyway this
 | |
|     // check might catch bugs.  Probably people should use Vector if they want to build arrays
 | |
|     // without knowing the final size in advance.
 | |
|     KJ_IREQUIRE(pos == endPtr, "ArrayBuilder::finish() called prematurely.");
 | |
|     Array<T> result(reinterpret_cast<T*>(ptr), pos - ptr, *disposer);
 | |
|     ptr = nullptr;
 | |
|     pos = nullptr;
 | |
|     endPtr = nullptr;
 | |
|     return result;
 | |
|   }
 | |
| 
 | |
|   inline bool isFull() const {
 | |
|     return pos == endPtr;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   T* ptr;
 | |
|   RemoveConst<T>* pos;
 | |
|   T* endPtr;
 | |
|   const ArrayDisposer* disposer;
 | |
| 
 | |
|   inline void dispose() {
 | |
|     // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly
 | |
|     // dispose again.
 | |
|     T* ptrCopy = ptr;
 | |
|     T* posCopy = pos;
 | |
|     T* endCopy = endPtr;
 | |
|     if (ptrCopy != nullptr) {
 | |
|       ptr = nullptr;
 | |
|       pos = nullptr;
 | |
|       endPtr = nullptr;
 | |
|       disposer->dispose(ptrCopy, posCopy - ptrCopy, endCopy - ptrCopy);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| inline ArrayBuilder<T> heapArrayBuilder(size_t size) {
 | |
|   // Like `heapArray<T>()` but does not default-construct the elements.  You must construct them
 | |
|   // manually by calling `add()`.
 | |
| 
 | |
|   return ArrayBuilder<T>(_::HeapArrayDisposer::allocateUninitialized<RemoveConst<T>>(size),
 | |
|                          size, _::HeapArrayDisposer::instance);
 | |
| }
 | |
| 
 | |
| // =======================================================================================
 | |
| // Inline Arrays
 | |
| 
 | |
| template <typename T, size_t fixedSize>
 | |
| class FixedArray {
 | |
|   // A fixed-width array whose storage is allocated inline rather than on the heap.
 | |
| 
 | |
| public:
 | |
|   inline size_t size() const { return fixedSize; }
 | |
|   inline T* begin() { return content; }
 | |
|   inline T* end() { return content + fixedSize; }
 | |
|   inline const T* begin() const { return content; }
 | |
|   inline const T* end() const { return content + fixedSize; }
 | |
| 
 | |
|   inline operator ArrayPtr<T>() {
 | |
|     return arrayPtr(content, fixedSize);
 | |
|   }
 | |
|   inline operator ArrayPtr<const T>() const {
 | |
|     return arrayPtr(content, fixedSize);
 | |
|   }
 | |
| 
 | |
|   inline T& operator[](size_t index) { return content[index]; }
 | |
|   inline const T& operator[](size_t index) const { return content[index]; }
 | |
| 
 | |
| private:
 | |
|   T content[fixedSize];
 | |
| };
 | |
| 
 | |
| template <typename T, size_t fixedSize>
 | |
| class CappedArray {
 | |
|   // Like `FixedArray` but can be dynamically resized as long as the size does not exceed the limit
 | |
|   // specified by the template parameter.
 | |
|   //
 | |
|   // TODO(someday):  Don't construct elements past currentSize?
 | |
| 
 | |
| public:
 | |
|   inline KJ_CONSTEXPR() CappedArray(): currentSize(fixedSize) {}
 | |
|   inline explicit constexpr CappedArray(size_t s): currentSize(s) {}
 | |
| 
 | |
|   inline size_t size() const { return currentSize; }
 | |
|   inline void setSize(size_t s) { KJ_IREQUIRE(s <= fixedSize); currentSize = s; }
 | |
|   inline T* begin() { return content; }
 | |
|   inline T* end() { return content + currentSize; }
 | |
|   inline const T* begin() const { return content; }
 | |
|   inline const T* end() const { return content + currentSize; }
 | |
| 
 | |
|   inline operator ArrayPtr<T>() {
 | |
|     return arrayPtr(content, currentSize);
 | |
|   }
 | |
|   inline operator ArrayPtr<const T>() const {
 | |
|     return arrayPtr(content, currentSize);
 | |
|   }
 | |
| 
 | |
|   inline T& operator[](size_t index) { return content[index]; }
 | |
|   inline const T& operator[](size_t index) const { return content[index]; }
 | |
| 
 | |
| private:
 | |
|   size_t currentSize;
 | |
|   T content[fixedSize];
 | |
| };
 | |
| 
 | |
| // =======================================================================================
 | |
| // KJ_MAP
 | |
| 
 | |
| #define KJ_MAP(elementName, array) \
 | |
|   ::kj::_::Mapper<KJ_DECLTYPE_REF(array)>(array) * \
 | |
|   [&](typename ::kj::_::Mapper<KJ_DECLTYPE_REF(array)>::Element elementName)
 | |
| // Applies some function to every element of an array, returning an Array of the results,  with
 | |
| // nice syntax.  Example:
 | |
| //
 | |
| //     StringPtr foo = "abcd";
 | |
| //     Array<char> bar = KJ_MAP(c, foo) -> char { return c + 1; };
 | |
| //     KJ_ASSERT(str(bar) == "bcde");
 | |
| 
 | |
| namespace _ {  // private
 | |
| 
 | |
| template <typename T>
 | |
| struct Mapper {
 | |
|   T array;
 | |
|   Mapper(T&& array): array(kj::fwd<T>(array)) {}
 | |
|   template <typename Func>
 | |
|   auto operator*(Func&& func) -> Array<decltype(func(*array.begin()))> {
 | |
|     auto builder = heapArrayBuilder<decltype(func(*array.begin()))>(array.size());
 | |
|     for (auto iter = array.begin(); iter != array.end(); ++iter) {
 | |
|       builder.add(func(*iter));
 | |
|     }
 | |
|     return builder.finish();
 | |
|   }
 | |
|   typedef decltype(*kj::instance<T>().begin()) Element;
 | |
| };
 | |
| 
 | |
| template <typename T, size_t s>
 | |
| struct Mapper<T(&)[s]> {
 | |
|   T* array;
 | |
|   Mapper(T* array): array(array) {}
 | |
|   template <typename Func>
 | |
|   auto operator*(Func&& func) -> Array<decltype(func(*array))> {
 | |
|     auto builder = heapArrayBuilder<decltype(func(*array))>(s);
 | |
|     for (size_t i = 0; i < s; i++) {
 | |
|       builder.add(func(array[i]));
 | |
|     }
 | |
|     return builder.finish();
 | |
|   }
 | |
|   typedef decltype(*array)& Element;
 | |
| };
 | |
| 
 | |
| }  // namespace _ (private)
 | |
| 
 | |
| // =======================================================================================
 | |
| // Inline implementation details
 | |
| 
 | |
| template <typename T>
 | |
| struct ArrayDisposer::Dispose_<T, true> {
 | |
|   static void dispose(T* firstElement, size_t elementCount, size_t capacity,
 | |
|                       const ArrayDisposer& disposer) {
 | |
|     disposer.disposeImpl(const_cast<RemoveConst<T>*>(firstElement),
 | |
|                          sizeof(T), elementCount, capacity, nullptr);
 | |
|   }
 | |
| };
 | |
| template <typename T>
 | |
| struct ArrayDisposer::Dispose_<T, false> {
 | |
|   static void destruct(void* ptr) {
 | |
|     kj::dtor(*reinterpret_cast<T*>(ptr));
 | |
|   }
 | |
| 
 | |
|   static void dispose(T* firstElement, size_t elementCount, size_t capacity,
 | |
|                       const ArrayDisposer& disposer) {
 | |
|     disposer.disposeImpl(firstElement, sizeof(T), elementCount, capacity, &destruct);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| void ArrayDisposer::dispose(T* firstElement, size_t elementCount, size_t capacity) const {
 | |
|   Dispose_<T>::dispose(firstElement, elementCount, capacity, *this);
 | |
| }
 | |
| 
 | |
| namespace _ {  // private
 | |
| 
 | |
| template <typename T>
 | |
| struct HeapArrayDisposer::Allocate_<T, true, true> {
 | |
|   static T* allocate(size_t elementCount, size_t capacity) {
 | |
|     return reinterpret_cast<T*>(allocateImpl(
 | |
|         sizeof(T), elementCount, capacity, nullptr, nullptr));
 | |
|   }
 | |
| };
 | |
| template <typename T>
 | |
| struct HeapArrayDisposer::Allocate_<T, false, true> {
 | |
|   static void construct(void* ptr) {
 | |
|     kj::ctor(*reinterpret_cast<T*>(ptr));
 | |
|   }
 | |
|   static T* allocate(size_t elementCount, size_t capacity) {
 | |
|     return reinterpret_cast<T*>(allocateImpl(
 | |
|         sizeof(T), elementCount, capacity, &construct, nullptr));
 | |
|   }
 | |
| };
 | |
| template <typename T>
 | |
| struct HeapArrayDisposer::Allocate_<T, false, false> {
 | |
|   static void construct(void* ptr) {
 | |
|     kj::ctor(*reinterpret_cast<T*>(ptr));
 | |
|   }
 | |
|   static void destruct(void* ptr) {
 | |
|     kj::dtor(*reinterpret_cast<T*>(ptr));
 | |
|   }
 | |
|   static T* allocate(size_t elementCount, size_t capacity) {
 | |
|     return reinterpret_cast<T*>(allocateImpl(
 | |
|         sizeof(T), elementCount, capacity, &construct, &destruct));
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| T* HeapArrayDisposer::allocate(size_t count) {
 | |
|   return Allocate_<T>::allocate(count, count);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| T* HeapArrayDisposer::allocateUninitialized(size_t count) {
 | |
|   return Allocate_<T, true, true>::allocate(0, count);
 | |
| }
 | |
| 
 | |
| template <typename Element, typename Iterator, bool move, bool = canMemcpy<Element>()>
 | |
| struct CopyConstructArray_;
 | |
| 
 | |
| template <typename T, bool move>
 | |
| struct CopyConstructArray_<T, T*, move, true> {
 | |
|   static inline T* apply(T* __restrict__ pos, T* start, T* end) {
 | |
|     memcpy(pos, start, reinterpret_cast<byte*>(end) - reinterpret_cast<byte*>(start));
 | |
|     return pos + (end - start);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct CopyConstructArray_<T, const T*, false, true> {
 | |
|   static inline T* apply(T* __restrict__ pos, const T* start, const T* end) {
 | |
|     memcpy(pos, start, reinterpret_cast<const byte*>(end) - reinterpret_cast<const byte*>(start));
 | |
|     return pos + (end - start);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T, typename Iterator, bool move>
 | |
| struct CopyConstructArray_<T, Iterator, move, true> {
 | |
|   static inline T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
 | |
|     // Since both the copy constructor and assignment operator are trivial, we know that assignment
 | |
|     // is equivalent to copy-constructing.  So we can make this case somewhat easier for the
 | |
|     // compiler to optimize.
 | |
|     while (start != end) {
 | |
|       *pos++ = *start++;
 | |
|     }
 | |
|     return pos;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T, typename Iterator>
 | |
| struct CopyConstructArray_<T, Iterator, false, false> {
 | |
|   struct ExceptionGuard {
 | |
|     T* start;
 | |
|     T* pos;
 | |
|     inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {}
 | |
|     ~ExceptionGuard() noexcept(false) {
 | |
|       while (pos > start) {
 | |
|         dtor(*--pos);
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   static T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
 | |
|     // Verify that T can be *implicitly* constructed from the source values.
 | |
|     if (false) implicitCast<T>(*start);
 | |
| 
 | |
|     if (noexcept(T(*start))) {
 | |
|       while (start != end) {
 | |
|         ctor(*pos++, *start++);
 | |
|       }
 | |
|       return pos;
 | |
|     } else {
 | |
|       // Crap.  This is complicated.
 | |
|       ExceptionGuard guard(pos);
 | |
|       while (start != end) {
 | |
|         ctor(*guard.pos, *start++);
 | |
|         ++guard.pos;
 | |
|       }
 | |
|       guard.start = guard.pos;
 | |
|       return guard.pos;
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T, typename Iterator>
 | |
| struct CopyConstructArray_<T, Iterator, true, false> {
 | |
|   // Actually move-construct.
 | |
| 
 | |
|   struct ExceptionGuard {
 | |
|     T* start;
 | |
|     T* pos;
 | |
|     inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {}
 | |
|     ~ExceptionGuard() noexcept(false) {
 | |
|       while (pos > start) {
 | |
|         dtor(*--pos);
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   static T* apply(T* __restrict__ pos, Iterator start, Iterator end) {
 | |
|     // Verify that T can be *implicitly* constructed from the source values.
 | |
|     if (false) implicitCast<T>(kj::mv(*start));
 | |
| 
 | |
|     if (noexcept(T(kj::mv(*start)))) {
 | |
|       while (start != end) {
 | |
|         ctor(*pos++, kj::mv(*start++));
 | |
|       }
 | |
|       return pos;
 | |
|     } else {
 | |
|       // Crap.  This is complicated.
 | |
|       ExceptionGuard guard(pos);
 | |
|       while (start != end) {
 | |
|         ctor(*guard.pos, kj::mv(*start++));
 | |
|         ++guard.pos;
 | |
|       }
 | |
|       guard.start = guard.pos;
 | |
|       return guard.pos;
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace _ (private)
 | |
| 
 | |
| template <typename T>
 | |
| template <typename Iterator, bool move>
 | |
| void ArrayBuilder<T>::addAll(Iterator start, Iterator end) {
 | |
|   pos = _::CopyConstructArray_<RemoveConst<T>, Decay<Iterator>, move>::apply(pos, start, end);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| Array<T> heapArray(const T* content, size_t size) {
 | |
|   ArrayBuilder<T> builder = heapArrayBuilder<T>(size);
 | |
|   builder.addAll(content, content + size);
 | |
|   return builder.finish();
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| Array<T> heapArray(T* content, size_t size) {
 | |
|   ArrayBuilder<T> builder = heapArrayBuilder<T>(size);
 | |
|   builder.addAll(content, content + size);
 | |
|   return builder.finish();
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| Array<T> heapArray(ArrayPtr<T> content) {
 | |
|   ArrayBuilder<T> builder = heapArrayBuilder<T>(content.size());
 | |
|   builder.addAll(content);
 | |
|   return builder.finish();
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| Array<T> heapArray(ArrayPtr<const T> content) {
 | |
|   ArrayBuilder<T> builder = heapArrayBuilder<T>(content.size());
 | |
|   builder.addAll(content);
 | |
|   return builder.finish();
 | |
| }
 | |
| 
 | |
| template <typename T, typename Iterator> Array<T>
 | |
| heapArray(Iterator begin, Iterator end) {
 | |
|   ArrayBuilder<T> builder = heapArrayBuilder<T>(end - begin);
 | |
|   builder.addAll(begin, end);
 | |
|   return builder.finish();
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline Array<T> heapArray(std::initializer_list<T> init) {
 | |
|   return heapArray<T>(init.begin(), init.end());
 | |
| }
 | |
| 
 | |
| }  // namespace kj
 | |
| 
 | |
| #endif  // KJ_ARRAY_H_
 | |
| 
 |