You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							141 lines
						
					
					
						
							4.1 KiB
						
					
					
				
			
		
		
	
	
							141 lines
						
					
					
						
							4.1 KiB
						
					
					
				| #include "acado_common.h"
 | |
| #include "acado_auxiliary_functions.h"
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <math.h>
 | |
| 
 | |
| #define NX          ACADO_NX  /* Number of differential state variables.  */
 | |
| #define NXA         ACADO_NXA /* Number of algebraic variables. */
 | |
| #define NU          ACADO_NU  /* Number of control inputs. */
 | |
| #define NOD         ACADO_NOD  /* Number of online data values. */
 | |
| 
 | |
| #define NY          ACADO_NY  /* Number of measurements/references on nodes 0..N - 1. */
 | |
| #define NYN         ACADO_NYN /* Number of measurements/references on node N. */
 | |
| 
 | |
| #define N           ACADO_N   /* Number of intervals in the horizon. */
 | |
| 
 | |
| ACADOvariables acadoVariables;
 | |
| ACADOworkspace acadoWorkspace;
 | |
| 
 | |
| typedef struct {
 | |
|   double x_ego, v_ego, a_ego;
 | |
| } state_t;
 | |
| 
 | |
| 
 | |
| typedef struct {
 | |
|   double x_ego[N+1];
 | |
|   double v_ego[N+1];
 | |
|   double a_ego[N+1];
 | |
|   double t[N+1];
 | |
|   double j_ego[N];
 | |
|   double cost;
 | |
| } log_t;
 | |
| 
 | |
| void init(double xCost, double vCost, double aCost, double accelCost, double jerkCost){
 | |
|   acado_initializeSolver();
 | |
|   int    i;
 | |
|   const int STEP_MULTIPLIER = 3;
 | |
| 
 | |
|   /* Initialize the states and controls. */
 | |
|   for (i = 0; i < NX * (N + 1); ++i)  acadoVariables.x[ i ] = 0.0;
 | |
|   for (i = 0; i < NU * N; ++i)  acadoVariables.u[ i ] = 0.0;
 | |
| 
 | |
|   /* Initialize the measurements/reference. */
 | |
|   for (i = 0; i < NY * N; ++i)  acadoVariables.y[ i ] = 0.0;
 | |
|   for (i = 0; i < NYN; ++i)  acadoVariables.yN[ i ] = 0.0;
 | |
| 
 | |
|   /* MPC: initialize the current state feedback. */
 | |
|   for (i = 0; i < NX; ++i) acadoVariables.x0[ i ] = 0.0;
 | |
|   // Set weights
 | |
| 
 | |
|   for (i = 0; i < N; i++) {
 | |
|     int f = 1;
 | |
|     if (i > 4){
 | |
|       f = STEP_MULTIPLIER;
 | |
|     }
 | |
|     // Setup diagonal entries
 | |
|     acadoVariables.W[NY*NY*i + (NY+1)*0] = xCost * f;
 | |
|     acadoVariables.W[NY*NY*i + (NY+1)*1] = vCost * f;
 | |
|     acadoVariables.W[NY*NY*i + (NY+1)*2] = aCost * f;
 | |
|     acadoVariables.W[NY*NY*i + (NY+1)*3] = accelCost * f;
 | |
|     acadoVariables.W[NY*NY*i + (NY+1)*4] = jerkCost * f;
 | |
|   }
 | |
|   acadoVariables.WN[(NYN+1)*0] = xCost * STEP_MULTIPLIER;
 | |
|   acadoVariables.WN[(NYN+1)*1] = vCost * STEP_MULTIPLIER;
 | |
|   acadoVariables.WN[(NYN+1)*2] = aCost * STEP_MULTIPLIER;
 | |
|   acadoVariables.WN[(NYN+1)*3] = accelCost * STEP_MULTIPLIER;
 | |
| 
 | |
| }
 | |
| 
 | |
| void init_with_simulation(double v_ego){
 | |
|   int i;
 | |
| 
 | |
|   double x_ego = 0.0;
 | |
| 
 | |
|   double dt = 0.2;
 | |
|   double t = 0.0;
 | |
| 
 | |
|   for (i = 0; i < N + 1; ++i){
 | |
|     if (i > 4){
 | |
|       dt = 0.6;
 | |
|     }
 | |
| 
 | |
|     acadoVariables.x[i*NX] = x_ego;
 | |
|     acadoVariables.x[i*NX+1] = v_ego;
 | |
|     acadoVariables.x[i*NX+2] = 0;
 | |
|     acadoVariables.x[i*NX+3] = t;
 | |
| 
 | |
|     x_ego += v_ego * dt;
 | |
|     t += dt;
 | |
|   }
 | |
| 
 | |
|   for (i = 0; i < NU * N; ++i)  acadoVariables.u[ i ] = 0.0;
 | |
|   for (i = 0; i < NY * N; ++i)  acadoVariables.y[ i ] = 0.0;
 | |
|   for (i = 0; i < NYN; ++i)  acadoVariables.yN[ i ] = 0.0;
 | |
| }
 | |
| 
 | |
| int run_mpc(state_t * x0, log_t * solution,
 | |
|             double x_poly[4], double v_poly[4], double a_poly[4]){
 | |
|   int i;
 | |
| 
 | |
|   for (i = 0; i < N + 1; ++i){
 | |
|     acadoVariables.od[i*NOD+0] = x_poly[0];
 | |
|     acadoVariables.od[i*NOD+1] = x_poly[1];
 | |
|     acadoVariables.od[i*NOD+2] = x_poly[2];
 | |
|     acadoVariables.od[i*NOD+3] = x_poly[3];
 | |
| 
 | |
|     acadoVariables.od[i*NOD+4] = v_poly[0];
 | |
|     acadoVariables.od[i*NOD+5] = v_poly[1];
 | |
|     acadoVariables.od[i*NOD+6] = v_poly[2];
 | |
|     acadoVariables.od[i*NOD+7] = v_poly[3];
 | |
| 
 | |
|     acadoVariables.od[i*NOD+8] = a_poly[0];
 | |
|     acadoVariables.od[i*NOD+9] = a_poly[1];
 | |
|     acadoVariables.od[i*NOD+10] = a_poly[2];
 | |
|     acadoVariables.od[i*NOD+11] = a_poly[3];
 | |
|   }
 | |
| 
 | |
|   acadoVariables.x[0] = acadoVariables.x0[0] = x0->x_ego;
 | |
|   acadoVariables.x[1] = acadoVariables.x0[1] = x0->v_ego;
 | |
|   acadoVariables.x[2] = acadoVariables.x0[2] = x0->a_ego;
 | |
|   acadoVariables.x[3] = acadoVariables.x0[3] = 0;
 | |
| 
 | |
|   acado_preparationStep();
 | |
|   acado_feedbackStep();
 | |
| 
 | |
|   for (i = 0; i <= N; i++){
 | |
|     solution->x_ego[i] = acadoVariables.x[i*NX];
 | |
|     solution->v_ego[i] = acadoVariables.x[i*NX+1];
 | |
|     solution->a_ego[i] = acadoVariables.x[i*NX+2];
 | |
|     solution->t[i] = acadoVariables.x[i*NX+3];
 | |
| 
 | |
|     if (i < N){
 | |
|       solution->j_ego[i] = acadoVariables.u[i];
 | |
|     }
 | |
|   }
 | |
|   solution->cost = acado_getObjective();
 | |
| 
 | |
|   // Dont shift states here. Current solution is closer to next timestep than if
 | |
|   // we shift by 0.1 seconds.
 | |
|   return acado_getNWSR();
 | |
| }
 | |
| 
 |