openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

352 lines
15 KiB

/*
* This file is part of ACADO Toolkit.
*
* ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
* Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
* Milan Vukov, Rien Quirynen, KU Leuven.
* Developed within the Optimization in Engineering Center (OPTEC)
* under supervision of Moritz Diehl. All rights reserved.
*
* ACADO Toolkit is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* ACADO Toolkit is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with ACADO Toolkit; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/**
* \file include/acado/symbolic_operator/quotient.hpp
* \author Boris Houska, Hans Joachim Ferreau
* \date 2008
*/
#ifndef ACADO_TOOLKIT_QUOTIENT_HPP
#define ACADO_TOOLKIT_QUOTIENT_HPP
#include <acado/symbolic_operator/symbolic_operator_fwd.hpp>
BEGIN_NAMESPACE_ACADO
/**
* \brief Implements the scalar quotient operator within the symbolic operators family.
*
* \ingroup BasicDataStructures
*
* The class Quotient implements the scalar quotient operator within the
* symbolic operators family.
*
* \author Boris Houska, Hans Joachim Ferreau
*/
class Quotient : public BinaryOperator{
public:
/** Default constructor. */
Quotient();
/** Default constructor. */
Quotient( Operator *_argument1, Operator *_argument2 );
/** Copy constructor (deep copy). */
Quotient( const Quotient &arg );
/** Default destructor. */
~Quotient();
/** Assignment Operator (deep copy). */
Quotient& operator=( const Quotient &arg );
/** Evaluates the expression and stores the intermediate \n
* results in a buffer (needed for automatic differentiation \n
* in backward mode) \n
* \return SUCCESFUL_RETURN \n
* RET_NAN \n
* */
virtual returnValue evaluate( int number /**< storage position */,
double *x /**< the input variable x */,
double *result /**< the result */ );
/** Evaluates the expression (templated version) */
virtual returnValue evaluate( EvaluationBase *x );
/** Returns the derivative of the expression with respect \n
* to the variable var(index). \n
* \return The expression for the derivative. \n
*
*/
virtual Operator* differentiate( int index /**< diff. index */ );
/** Automatic Differentiation in forward mode on the symbolic \n
* level. This function generates an expression for a \n
* forward derivative \n
* \return SUCCESSFUL_RETURN \n
*/
virtual Operator* AD_forward( int dim , /**< dimension of the seed */
VariableType *varType , /**< the variable types */
int *component, /**< and their components */
Operator **seed , /**< the forward seed */
int &nNewIS , /**< the number of new IS */
TreeProjection ***newIS /**< the new IS-pointer */ );
/** Automatic Differentiation in backward mode on the symbolic \n
* level. This function generates an expression for a \n
* backward derivative \n
* \return SUCCESSFUL_RETURN \n
*/
virtual returnValue AD_backward( int dim , /**< number of directions */
VariableType *varType , /**< the variable types */
int *component, /**< and their components */
Operator *seed , /**< the backward seed */
Operator **df , /**< the result */
int &nNewIS , /**< the number of new IS */
TreeProjection ***newIS /**< the new IS-pointer */ );
/** Automatic Differentiation in symmetric mode on the symbolic \n
* level. This function generates an expression for a \n
* second order derivative. \n
* \return SUCCESSFUL_RETURN \n
*/
virtual returnValue AD_symmetric( int dim , /**< number of directions */
VariableType *varType , /**< the variable types */
int *component , /**< and their components */
Operator *l , /**< the backward seed */
Operator **S , /**< forward seed matrix */
int dimS , /**< dimension of forward seed */
Operator **dfS , /**< first order foward result */
Operator **ldf , /**< first order backward result */
Operator **H , /**< upper trianglular part of the Hessian */
int &nNewLIS , /**< the number of newLIS */
TreeProjection ***newLIS , /**< the new LIS-pointer */
int &nNewSIS , /**< the number of newSIS */
TreeProjection ***newSIS , /**< the new SIS-pointer */
int &nNewHIS , /**< the number of newHIS */
TreeProjection ***newHIS /**< the new HIS-pointer */ );
/** Substitutes var(index) with the expression sub. \n
* \return The substituted expression. \n
*
*/
virtual Operator* substitute( int index /**< subst. index */,
const Operator *sub /**< the substitution*/);
/** Checks whether the expression is linear in \n
* (or not depending on) a variable \n
* \return BT_FALSE if no linearity is \n
* detected \n
* BT_TRUE otherwise \n
*
*/
virtual BooleanType isLinearIn( int dim , /**< number of directions */
VariableType *varType , /**< the variable types */
int *component, /**< and their components */
BooleanType *implicit_dep /**< implicit dependencies */ );
/** Checks whether the expression is polynomial in \n
* the specified variables \n
* \return BT_FALSE if the expression is not polynomial \n
* BT_TRUE otherwise \n
*
*/
virtual BooleanType isPolynomialIn( int dim , /**< number of directions */
VariableType *varType , /**< the variable types */
int *component, /**< and their components */
BooleanType *implicit_dep /**< implicit dependencies */ );
/** Checks whether the expression is rational in \n
* the specified variables \n
* \return BT_FALSE if the expression is not rational \n
* BT_TRUE otherwise \n
*
*/
virtual BooleanType isRationalIn( int dim , /**< number of directions */
VariableType *varType , /**< the variable types */
int *component, /**< and their components */
BooleanType *implicit_dep /**< implicit dependencies */ );
/** Returns the monotonicity of the expression. \n
* \return MT_NONDECREASING \n
* MT_NONINCREASING \n
* MT_NONMONOTONIC \n
*
*/
virtual MonotonicityType getMonotonicity( );
/** Returns the curvature of the expression \n
* \return CT_CONSTANT \n
* CT_AFFINE \n
* CT_CONVEX \n
* CT_CONCAVE \n
*
*/
virtual CurvatureType getCurvature( );
/** Return the value of the constant */
virtual double getValue() const;
/** Automatic Differentiation in forward mode. \n
* This function uses the intermediate \n
* results from a buffer \n
* \return SUCCESFUL_RETURN \n
* RET_NAN \n
*/
virtual returnValue AD_forward( int number /**< storage position */,
double *seed /**< the seed */,
double *df /**< the derivative of
the expression */ );
/** Automatic Differentiation in forward mode. \n
* This function stores the intermediate \n
* results in a buffer (needed for 2nd order automatic \n
* differentiation in backward mode) \n
* \return SUCCESFUL_RETURN \n
* RET_NAN \n
*/
virtual returnValue AD_forward( int number /**< storage position */,
double *x /**< The evaluation
point x */,
double *seed /**< the seed */,
double *f /**< the value of the
expression at x */,
double *df /**< the derivative of
the expression */ );
// IMPORTANT REMARK FOR AD_BACKWARD: run evaluate first to define
// the point x and to compute f.
/** Automatic Differentiation in backward mode based on \n
* buffered values \n
* \return SUCCESFUL_RETURN \n
* RET_NAN \n
*/
virtual returnValue AD_backward( int number /**< the buffer
position */,
double seed /**< the seed */,
double *df /**< the derivative of
the expression */);
/** Automatic Differentiation in forward mode for \n
* 2nd derivatives. \n
* This function uses intermediate \n
* results from a buffer. \n
* \return SUCCESFUL_RETURN \n
* RET_NAN \n
*/
virtual returnValue AD_forward2( int number /**< the buffer
position */,
double *seed1 /**< the seed */,
double *seed2 /**< the seed for the
first derivative */,
double *df /**< the derivative of
the expression */,
double *ddf /**< the 2nd derivative
of the expression*/);
// IMPORTANT REMARK FOR AD_BACKWARD2: run AD_forward first to define
// the point x and to compute f and df.
/** Automatic Differentiation in backward mode for 2nd order \n
* derivatives based on buffered values. \n
* \return SUCCESFUL_RETURN \n
* RET_NAN \n
*/
virtual returnValue AD_backward2( int number /**< the buffer
position */,
double seed1 /**< the seed1 */,
double seed2 /**< the seed2 */,
double *df /**< the 1st derivative
of the expression */,
double *ddf /**< the 2nd derivative
of the expression */ );
/** Prints the expression into a stream. \n
* \return SUCCESFUL_RETURN \n
*/
virtual std::ostream& print( std::ostream &stream ) const;
/** Provides a deep copy of the expression. \n
* \return a clone of the expression. \n
*/
virtual Operator* clone() const;
/** Asks the expression for its name. \n
* \return the name of the expression. \n
*/
virtual OperatorName getName();
virtual returnValue initDerivative();
//
// PROTECTED FUNCTIONS:
//
protected:
//
// PROTECTED MEMBERS:
//
protected:
TreeProjection *derivative0; /**< An auxiliary variable to define the quotient. */
TreeProjection *derivative1; /**< An auxiliary variable to define the first order derivative of the quotient. */
TreeProjection *derivative2; /**< An auxiliary variable to define the second order derivative of the quotient. */
};
CLOSE_NAMESPACE_ACADO
#endif