openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

168 lines
4.6 KiB

#! /usr/bin/env python
import numpy as np
import matplotlib.pyplot as plt
from selfdrive.controls.lib.longitudinal_mpc import libmpc_py
from selfdrive.controls.lib.drive_helpers import MPC_COST_LONG
import math
# plot liongitudinal MPC trajectory by defining boundary conditions:
# ego and lead vehicles state. Use this script to tune MPC costs
def RW(v_ego, v_l):
TR = 1.8
G = 9.81
return (v_ego * TR - (v_l - v_ego) * TR + v_ego*v_ego/(2*G) - v_l*v_l / (2*G))
def NORM_RW_ERROR(v_ego, v_l, p):
return (RW(v_ego, v_l) + 4.0 - p)
return (RW(v_ego, v_l) + 4.0 - p) / (np.sqrt(v_ego + 0.5) + 0.1)
v_ego = 20.0
a_ego = 0
x_lead = 10.0
v_lead = 20.0
a_lead = -3.0
a_lead_tau = 0.
# v_ego = 7.02661012716
# a_ego = -1.26143024772
# x_lead = 29.625 + 20
# v_lead = 0.725235462189 + 1
# a_lead = -1.00025629997
# a_lead_tau = 2.90729817665
min_a_lead_tau = (a_lead**2 * math.pi) / (2 * (v_lead + 0.01)**2)
min_a_lead_tau = 0.0
print(a_lead_tau, min_a_lead_tau)
a_lead_tau = max(a_lead_tau, min_a_lead_tau)
ffi, libmpc = libmpc_py.get_libmpc(1)
libmpc.init(MPC_COST_LONG.TTC, MPC_COST_LONG.DISTANCE, MPC_COST_LONG.ACCELERATION, MPC_COST_LONG.JERK)
libmpc.init_with_simulation(v_ego, x_lead, v_lead, a_lead, a_lead_tau)
cur_state = ffi.new("state_t *")
cur_state[0].x_ego = 0.0
cur_state[0].v_ego = v_ego
cur_state[0].a_ego = a_ego
cur_state[0].x_l = x_lead
cur_state[0].v_l = v_lead
mpc_solution = ffi.new("log_t *")
for _ in range(10):
print(libmpc.run_mpc(cur_state, mpc_solution, a_lead_tau, a_lead))
for i in range(21):
print("t: %.2f\t x_e: %.2f\t v_e: %.2f\t a_e: %.2f\t" % (mpc_solution[0].t[i], mpc_solution[0].x_ego[i], mpc_solution[0].v_ego[i], mpc_solution[0].a_ego[i]))
print("x_l: %.2f\t v_l: %.2f\t \t" % (mpc_solution[0].x_l[i], mpc_solution[0].v_l[i]))
t = np.hstack([np.arange(0., 1.0, 0.2), np.arange(1.0, 10.1, 0.6)])
print(map(float, mpc_solution[0].x_ego)[-1])
print(map(float, mpc_solution[0].x_l)[-1] - map(float, mpc_solution[0].x_ego)[-1])
plt.figure(figsize=(8, 8))
plt.subplot(4, 1, 1)
x_l = np.array(map(float, mpc_solution[0].x_l))
plt.plot(t, map(float, mpc_solution[0].x_ego))
plt.plot(t, x_l)
plt.legend(['ego', 'lead'])
plt.title('x')
plt.grid()
plt.subplot(4, 1, 2)
v_ego = np.array(map(float, mpc_solution[0].v_ego))
v_l = np.array(map(float, mpc_solution[0].v_l))
plt.plot(t, v_ego)
plt.plot(t, v_l)
plt.legend(['ego', 'lead'])
plt.ylim([-1, max(max(v_ego), max(v_l))])
plt.title('v')
plt.grid()
plt.subplot(4, 1, 3)
plt.plot(t, map(float, mpc_solution[0].a_ego))
plt.plot(t, map(float, mpc_solution[0].a_l))
plt.legend(['ego', 'lead'])
plt.title('a')
plt.grid()
plt.subplot(4, 1, 4)
d_l = np.array(map(float, mpc_solution[0].x_l)) - np.array(map(float, mpc_solution[0].x_ego))
desired = 4.0 + RW(v_ego, v_l)
plt.plot(t, d_l)
plt.plot(t, desired, '--')
plt.ylim(-1, max(max(desired), max(d_l)))
plt.legend(['relative distance', 'desired distance'])
plt.grid()
plt.show()
# c1 = np.exp(0.3 * NORM_RW_ERROR(v_ego, v_l, d_l))
# c2 = np.exp(4.5 - d_l)
# print(c1)
# print(c2)
# plt.figure()
# plt.plot(t, c1, label="NORM_RW_ERROR")
# plt.plot(t, c2, label="penalty function")
# plt.legend()
# ## OLD MPC
# a_lead_tau = 1.5
# a_lead_tau = max(a_lead_tau, -a_lead / (v_lead + 0.01))
# ffi, libmpc = libmpc_py.get_libmpc(1)
# libmpc.init(MPC_COST_LONG.TTC, MPC_COST_LONG.DISTANCE, MPC_COST_LONG.ACCELERATION, MPC_COST_LONG.JERK)
# libmpc.init_with_simulation(v_ego, x_lead, v_lead, a_lead, a_lead_tau)
# cur_state = ffi.new("state_t *")
# cur_state[0].x_ego = 0.0
# cur_state[0].v_ego = v_ego
# cur_state[0].a_ego = a_ego
# cur_state[0].x_lead = x_lead
# cur_state[0].v_lead = v_lead
# cur_state[0].a_lead = a_lead
# mpc_solution = ffi.new("log_t *")
# for _ in range(10):
# print libmpc.run_mpc(cur_state, mpc_solution, a_lead_tau)
# t = np.hstack([np.arange(0., 1.0, 0.2), np.arange(1.0, 10.1, 0.6)])
# print(map(float, mpc_solution[0].x_ego)[-1])
# print(map(float, mpc_solution[0].x_lead)[-1] - map(float, mpc_solution[0].x_ego)[-1])
# plt.subplot(4, 2, 2)
# plt.plot(t, map(float, mpc_solution[0].x_ego))
# plt.plot(t, map(float, mpc_solution[0].x_lead))
# plt.legend(['ego', 'lead'])
# plt.title('x')
# plt.subplot(4, 2, 4)
# plt.plot(t, map(float, mpc_solution[0].v_ego))
# plt.plot(t, map(float, mpc_solution[0].v_lead))
# plt.legend(['ego', 'lead'])
# plt.title('v')
# plt.subplot(4, 2, 6)
# plt.plot(t, map(float, mpc_solution[0].a_ego))
# plt.plot(t, map(float, mpc_solution[0].a_lead))
# plt.legend(['ego', 'lead'])
# plt.title('a')
# plt.subplot(4, 2, 8)
# plt.plot(t, np.array(map(float, mpc_solution[0].x_lead)) - np.array(map(float, mpc_solution[0].x_ego)))
# plt.show()