openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

139 lines
5.2 KiB

#include <cstring>
#include "libyuv.h"
#include "selfdrive/common/mat.h"
#include "selfdrive/common/modeldata.h"
#include "selfdrive/common/params.h"
#include "selfdrive/common/timing.h"
#include "selfdrive/hardware/hw.h"
#include "selfdrive/modeld/models/dmonitoring.h"
constexpr int MODEL_WIDTH = 1440;
constexpr int MODEL_HEIGHT = 960;
template <class T>
static inline T *get_buffer(std::vector<T> &buf, const size_t size) {
if (buf.size() < size) buf.resize(size);
return buf.data();
}
void dmonitoring_init(DMonitoringModelState* s) {
s->is_rhd = Params().getBool("IsRHD");
#ifdef USE_ONNX_MODEL
s->m = new ONNXModel("../../models/dmonitoring_model.onnx", &s->output[0], OUTPUT_SIZE, USE_DSP_RUNTIME);
#else
s->m = new SNPEModel("../../models/dmonitoring_model_q.dlc", &s->output[0], OUTPUT_SIZE, USE_DSP_RUNTIME);
#endif
s->m->addCalib(s->calib, CALIB_LEN);
}
DMonitoringResult dmonitoring_eval_frame(DMonitoringModelState* s, void* stream_buf, int width, int height, float *calib) {
int v_off = height - MODEL_HEIGHT;
int h_off = (width - MODEL_WIDTH) / 2;
int yuv_buf_len = (MODEL_WIDTH/2) * (MODEL_HEIGHT/2) * 6; // Y|u|v, frame2tensor done in dsp
uint8_t *raw_buf = (uint8_t *) stream_buf;
// vertical crop free
uint8_t *raw_y_start = raw_buf + width * v_off;
uint8_t *raw_u_start = raw_buf + width * height + (width / 2) * (v_off / 2);
uint8_t *raw_v_start = raw_u_start + (width / 2) * (height / 2);
float *net_input_buf = get_buffer(s->net_input_buf, yuv_buf_len);
// snpe UserBufferEncodingUnsigned8Bit doesn't work
// fast float conversion instead, also does h crop and scales to 0-1
for (int r = 0; r < MODEL_HEIGHT / 2; ++r) {
libyuv::ByteToFloat(raw_y_start + (2*r) * width + h_off, net_input_buf + (2*r) * MODEL_WIDTH, 0.003921569f, MODEL_WIDTH);
libyuv::ByteToFloat(raw_y_start + (2*r+1) * width + h_off, net_input_buf + (2*r+1) * MODEL_WIDTH, 0.003921569f, MODEL_WIDTH);
libyuv::ByteToFloat(raw_u_start + r * (width / 2) + (h_off / 2), net_input_buf + MODEL_WIDTH * MODEL_HEIGHT + r * MODEL_WIDTH / 2, 0.003921569f, MODEL_WIDTH / 2);
libyuv::ByteToFloat(raw_v_start + r * (width / 2) + (h_off / 2), net_input_buf + MODEL_WIDTH * MODEL_HEIGHT * 5 / 4 + r * MODEL_WIDTH / 2, 0.003921569f, MODEL_WIDTH / 2);
}
// printf("preprocess completed. %d \n", yuv_buf_len);
// FILE *dump_yuv_file = fopen("/tmp/rawdump.yuv", "wb");
// fwrite(net_input_buf, yuv_buf_len, sizeof(float), dump_yuv_file);
// fclose(dump_yuv_file);
// # testing:
// dat = np.fromfile('/tmp/rawdump.yuv', dtype=np.float32)
// dat = dat.reshape(1,6,320,512) * 128. + 128.
// frame = tensor_to_frames(dat)[0]
// frame = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
double t1 = millis_since_boot();
s->m->addImage(net_input_buf, yuv_buf_len);
for (int i = 0; i < CALIB_LEN; i++) {
s->calib[i] = calib[i];
}
s->m->execute();
double t2 = millis_since_boot();
DMonitoringResult ret = {0};
for (int i = 0; i < 3; ++i) {
ret.face_orientation[i] = s->output[i] * REG_SCALE;
ret.face_orientation_meta[i] = exp(s->output[6 + i]);
}
for (int i = 0; i < 2; ++i) {
ret.face_position[i] = s->output[3 + i] * REG_SCALE;
ret.face_position_meta[i] = exp(s->output[9 + i]);
}
for (int i = 0; i < 4; ++i) {
ret.ready_prob[i] = sigmoid(s->output[39 + i]);
}
for (int i = 0; i < 2; ++i) {
ret.not_ready_prob[i] = sigmoid(s->output[43 + i]);
}
ret.face_prob = sigmoid(s->output[12]);
ret.left_eye_prob = sigmoid(s->output[21]);
ret.right_eye_prob = sigmoid(s->output[30]);
ret.left_blink_prob = sigmoid(s->output[31]);
ret.right_blink_prob = sigmoid(s->output[32]);
ret.sg_prob = sigmoid(s->output[33]);
ret.poor_vision = sigmoid(s->output[34]);
ret.partial_face = sigmoid(s->output[35]);
ret.distracted_pose = sigmoid(s->output[36]);
ret.distracted_eyes = sigmoid(s->output[37]);
ret.occluded_prob = sigmoid(s->output[38]);
ret.dsp_execution_time = (t2 - t1) / 1000.;
return ret;
}
void dmonitoring_publish(PubMaster &pm, uint32_t frame_id, const DMonitoringResult &res, float execution_time, kj::ArrayPtr<const float> raw_pred) {
// make msg
MessageBuilder msg;
auto framed = msg.initEvent().initDriverState();
framed.setFrameId(frame_id);
framed.setModelExecutionTime(execution_time);
framed.setDspExecutionTime(res.dsp_execution_time);
framed.setFaceOrientation(res.face_orientation);
framed.setFaceOrientationStd(res.face_orientation_meta);
framed.setFacePosition(res.face_position);
framed.setFacePositionStd(res.face_position_meta);
framed.setFaceProb(res.face_prob);
framed.setLeftEyeProb(res.left_eye_prob);
framed.setRightEyeProb(res.right_eye_prob);
framed.setLeftBlinkProb(res.left_blink_prob);
framed.setRightBlinkProb(res.right_blink_prob);
framed.setSunglassesProb(res.sg_prob);
framed.setPoorVision(res.poor_vision);
framed.setPartialFace(res.partial_face);
framed.setDistractedPose(res.distracted_pose);
framed.setDistractedEyes(res.distracted_eyes);
framed.setOccludedProb(res.occluded_prob);
framed.setReadyProb(res.ready_prob);
framed.setNotReadyProb(res.not_ready_prob);
if (send_raw_pred) {
framed.setRawPredictions(raw_pred.asBytes());
}
pm.send("driverState", msg);
}
void dmonitoring_free(DMonitoringModelState* s) {
delete s->m;
}