openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

406 lines
14 KiB

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_POLYNOMIAL_SOLVER_H
#define EIGEN_POLYNOMIAL_SOLVER_H
namespace Eigen {
/** \ingroup Polynomials_Module
* \class PolynomialSolverBase.
*
* \brief Defined to be inherited by polynomial solvers: it provides
* convenient methods such as
* - real roots,
* - greatest, smallest complex roots,
* - real roots with greatest, smallest absolute real value,
* - greatest, smallest real roots.
*
* It stores the set of roots as a vector of complexes.
*
*/
template< typename _Scalar, int _Deg >
class PolynomialSolverBase
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Deg==Dynamic ? Dynamic : _Deg)
typedef _Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef std::complex<RealScalar> RootType;
typedef Matrix<RootType,_Deg,1> RootsType;
typedef DenseIndex Index;
protected:
template< typename OtherPolynomial >
inline void setPolynomial( const OtherPolynomial& poly ){
m_roots.resize(poly.size()-1); }
public:
template< typename OtherPolynomial >
inline PolynomialSolverBase( const OtherPolynomial& poly ){
setPolynomial( poly() ); }
inline PolynomialSolverBase(){}
public:
/** \returns the complex roots of the polynomial */
inline const RootsType& roots() const { return m_roots; }
public:
/** Clear and fills the back insertion sequence with the real roots of the polynomial
* i.e. the real part of the complex roots that have an imaginary part which
* absolute value is smaller than absImaginaryThreshold.
* absImaginaryThreshold takes the dummy_precision associated
* with the _Scalar template parameter of the PolynomialSolver class as the default value.
*
* \param[out] bi_seq : the back insertion sequence (stl concept)
* \param[in] absImaginaryThreshold : the maximum bound of the imaginary part of a complex
* number that is considered as real.
* */
template<typename Stl_back_insertion_sequence>
inline void realRoots( Stl_back_insertion_sequence& bi_seq,
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
{
using std::abs;
bi_seq.clear();
for(Index i=0; i<m_roots.size(); ++i )
{
if( abs( m_roots[i].imag() ) < absImaginaryThreshold ){
bi_seq.push_back( m_roots[i].real() ); }
}
}
protected:
template<typename squaredNormBinaryPredicate>
inline const RootType& selectComplexRoot_withRespectToNorm( squaredNormBinaryPredicate& pred ) const
{
Index res=0;
RealScalar norm2 = numext::abs2( m_roots[0] );
for( Index i=1; i<m_roots.size(); ++i )
{
const RealScalar currNorm2 = numext::abs2( m_roots[i] );
if( pred( currNorm2, norm2 ) ){
res=i; norm2=currNorm2; }
}
return m_roots[res];
}
public:
/**
* \returns the complex root with greatest norm.
*/
inline const RootType& greatestRoot() const
{
std::greater<Scalar> greater;
return selectComplexRoot_withRespectToNorm( greater );
}
/**
* \returns the complex root with smallest norm.
*/
inline const RootType& smallestRoot() const
{
std::less<Scalar> less;
return selectComplexRoot_withRespectToNorm( less );
}
protected:
template<typename squaredRealPartBinaryPredicate>
inline const RealScalar& selectRealRoot_withRespectToAbsRealPart(
squaredRealPartBinaryPredicate& pred,
bool& hasArealRoot,
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
{
using std::abs;
hasArealRoot = false;
Index res=0;
RealScalar abs2(0);
for( Index i=0; i<m_roots.size(); ++i )
{
if( abs( m_roots[i].imag() ) < absImaginaryThreshold )
{
if( !hasArealRoot )
{
hasArealRoot = true;
res = i;
abs2 = m_roots[i].real() * m_roots[i].real();
}
else
{
const RealScalar currAbs2 = m_roots[i].real() * m_roots[i].real();
if( pred( currAbs2, abs2 ) )
{
abs2 = currAbs2;
res = i;
}
}
}
else
{
if( abs( m_roots[i].imag() ) < abs( m_roots[res].imag() ) ){
res = i; }
}
}
return numext::real_ref(m_roots[res]);
}
template<typename RealPartBinaryPredicate>
inline const RealScalar& selectRealRoot_withRespectToRealPart(
RealPartBinaryPredicate& pred,
bool& hasArealRoot,
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
{
using std::abs;
hasArealRoot = false;
Index res=0;
RealScalar val(0);
for( Index i=0; i<m_roots.size(); ++i )
{
if( abs( m_roots[i].imag() ) < absImaginaryThreshold )
{
if( !hasArealRoot )
{
hasArealRoot = true;
res = i;
val = m_roots[i].real();
}
else
{
const RealScalar curr = m_roots[i].real();
if( pred( curr, val ) )
{
val = curr;
res = i;
}
}
}
else
{
if( abs( m_roots[i].imag() ) < abs( m_roots[res].imag() ) ){
res = i; }
}
}
return numext::real_ref(m_roots[res]);
}
public:
/**
* \returns a real root with greatest absolute magnitude.
* A real root is defined as the real part of a complex root with absolute imaginary
* part smallest than absImaginaryThreshold.
* absImaginaryThreshold takes the dummy_precision associated
* with the _Scalar template parameter of the PolynomialSolver class as the default value.
* If no real root is found the boolean hasArealRoot is set to false and the real part of
* the root with smallest absolute imaginary part is returned instead.
*
* \param[out] hasArealRoot : boolean true if a real root is found according to the
* absImaginaryThreshold criterion, false otherwise.
* \param[in] absImaginaryThreshold : threshold on the absolute imaginary part to decide
* whether or not a root is real.
*/
inline const RealScalar& absGreatestRealRoot(
bool& hasArealRoot,
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
{
std::greater<Scalar> greater;
return selectRealRoot_withRespectToAbsRealPart( greater, hasArealRoot, absImaginaryThreshold );
}
/**
* \returns a real root with smallest absolute magnitude.
* A real root is defined as the real part of a complex root with absolute imaginary
* part smallest than absImaginaryThreshold.
* absImaginaryThreshold takes the dummy_precision associated
* with the _Scalar template parameter of the PolynomialSolver class as the default value.
* If no real root is found the boolean hasArealRoot is set to false and the real part of
* the root with smallest absolute imaginary part is returned instead.
*
* \param[out] hasArealRoot : boolean true if a real root is found according to the
* absImaginaryThreshold criterion, false otherwise.
* \param[in] absImaginaryThreshold : threshold on the absolute imaginary part to decide
* whether or not a root is real.
*/
inline const RealScalar& absSmallestRealRoot(
bool& hasArealRoot,
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
{
std::less<Scalar> less;
return selectRealRoot_withRespectToAbsRealPart( less, hasArealRoot, absImaginaryThreshold );
}
/**
* \returns the real root with greatest value.
* A real root is defined as the real part of a complex root with absolute imaginary
* part smallest than absImaginaryThreshold.
* absImaginaryThreshold takes the dummy_precision associated
* with the _Scalar template parameter of the PolynomialSolver class as the default value.
* If no real root is found the boolean hasArealRoot is set to false and the real part of
* the root with smallest absolute imaginary part is returned instead.
*
* \param[out] hasArealRoot : boolean true if a real root is found according to the
* absImaginaryThreshold criterion, false otherwise.
* \param[in] absImaginaryThreshold : threshold on the absolute imaginary part to decide
* whether or not a root is real.
*/
inline const RealScalar& greatestRealRoot(
bool& hasArealRoot,
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
{
std::greater<Scalar> greater;
return selectRealRoot_withRespectToRealPart( greater, hasArealRoot, absImaginaryThreshold );
}
/**
* \returns the real root with smallest value.
* A real root is defined as the real part of a complex root with absolute imaginary
* part smallest than absImaginaryThreshold.
* absImaginaryThreshold takes the dummy_precision associated
* with the _Scalar template parameter of the PolynomialSolver class as the default value.
* If no real root is found the boolean hasArealRoot is set to false and the real part of
* the root with smallest absolute imaginary part is returned instead.
*
* \param[out] hasArealRoot : boolean true if a real root is found according to the
* absImaginaryThreshold criterion, false otherwise.
* \param[in] absImaginaryThreshold : threshold on the absolute imaginary part to decide
* whether or not a root is real.
*/
inline const RealScalar& smallestRealRoot(
bool& hasArealRoot,
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
{
std::less<Scalar> less;
return selectRealRoot_withRespectToRealPart( less, hasArealRoot, absImaginaryThreshold );
}
protected:
RootsType m_roots;
};
#define EIGEN_POLYNOMIAL_SOLVER_BASE_INHERITED_TYPES( BASE ) \
typedef typename BASE::Scalar Scalar; \
typedef typename BASE::RealScalar RealScalar; \
typedef typename BASE::RootType RootType; \
typedef typename BASE::RootsType RootsType;
/** \ingroup Polynomials_Module
*
* \class PolynomialSolver
*
* \brief A polynomial solver
*
* Computes the complex roots of a real polynomial.
*
* \param _Scalar the scalar type, i.e., the type of the polynomial coefficients
* \param _Deg the degree of the polynomial, can be a compile time value or Dynamic.
* Notice that the number of polynomial coefficients is _Deg+1.
*
* This class implements a polynomial solver and provides convenient methods such as
* - real roots,
* - greatest, smallest complex roots,
* - real roots with greatest, smallest absolute real value.
* - greatest, smallest real roots.
*
* WARNING: this polynomial solver is experimental, part of the unsupported Eigen modules.
*
*
* Currently a QR algorithm is used to compute the eigenvalues of the companion matrix of
* the polynomial to compute its roots.
* This supposes that the complex moduli of the roots are all distinct: e.g. there should
* be no multiple roots or conjugate roots for instance.
* With 32bit (float) floating types this problem shows up frequently.
* However, almost always, correct accuracy is reached even in these cases for 64bit
* (double) floating types and small polynomial degree (<20).
*/
template< typename _Scalar, int _Deg >
class PolynomialSolver : public PolynomialSolverBase<_Scalar,_Deg>
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Deg==Dynamic ? Dynamic : _Deg)
typedef PolynomialSolverBase<_Scalar,_Deg> PS_Base;
EIGEN_POLYNOMIAL_SOLVER_BASE_INHERITED_TYPES( PS_Base )
typedef Matrix<Scalar,_Deg,_Deg> CompanionMatrixType;
typedef EigenSolver<CompanionMatrixType> EigenSolverType;
public:
/** Computes the complex roots of a new polynomial. */
template< typename OtherPolynomial >
void compute( const OtherPolynomial& poly )
{
eigen_assert( Scalar(0) != poly[poly.size()-1] );
eigen_assert( poly.size() > 1 );
if(poly.size() > 2 )
{
internal::companion<Scalar,_Deg> companion( poly );
companion.balance();
m_eigenSolver.compute( companion.denseMatrix() );
m_roots = m_eigenSolver.eigenvalues();
}
else if(poly.size () == 2)
{
m_roots.resize(1);
m_roots[0] = -poly[0]/poly[1];
}
}
public:
template< typename OtherPolynomial >
inline PolynomialSolver( const OtherPolynomial& poly ){
compute( poly ); }
inline PolynomialSolver(){}
protected:
using PS_Base::m_roots;
EigenSolverType m_eigenSolver;
};
template< typename _Scalar >
class PolynomialSolver<_Scalar,1> : public PolynomialSolverBase<_Scalar,1>
{
public:
typedef PolynomialSolverBase<_Scalar,1> PS_Base;
EIGEN_POLYNOMIAL_SOLVER_BASE_INHERITED_TYPES( PS_Base )
public:
/** Computes the complex roots of a new polynomial. */
template< typename OtherPolynomial >
void compute( const OtherPolynomial& poly )
{
eigen_assert( poly.size() == 2 );
eigen_assert( Scalar(0) != poly[1] );
m_roots[0] = -poly[0]/poly[1];
}
public:
template< typename OtherPolynomial >
inline PolynomialSolver( const OtherPolynomial& poly ){
compute( poly ); }
inline PolynomialSolver(){}
protected:
using PS_Base::m_roots;
};
} // end namespace Eigen
#endif // EIGEN_POLYNOMIAL_SOLVER_H