You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							64 lines
						
					
					
						
							1.8 KiB
						
					
					
				
			
		
		
	
	
							64 lines
						
					
					
						
							1.8 KiB
						
					
					
				import numpy as np
 | 
						|
from numbers import Number
 | 
						|
 | 
						|
class PIDController:
 | 
						|
  def __init__(self, k_p, k_i, k_f=0., k_d=0., pos_limit=1e308, neg_limit=-1e308, rate=100):
 | 
						|
    self._k_p = k_p
 | 
						|
    self._k_i = k_i
 | 
						|
    self._k_d = k_d
 | 
						|
    self.k_f = k_f   # feedforward gain
 | 
						|
    if isinstance(self._k_p, Number):
 | 
						|
      self._k_p = [[0], [self._k_p]]
 | 
						|
    if isinstance(self._k_i, Number):
 | 
						|
      self._k_i = [[0], [self._k_i]]
 | 
						|
    if isinstance(self._k_d, Number):
 | 
						|
      self._k_d = [[0], [self._k_d]]
 | 
						|
 | 
						|
    self.set_limits(pos_limit, neg_limit)
 | 
						|
 | 
						|
    self.i_rate = 1.0 / rate
 | 
						|
    self.speed = 0.0
 | 
						|
 | 
						|
    self.reset()
 | 
						|
 | 
						|
  @property
 | 
						|
  def k_p(self):
 | 
						|
    return np.interp(self.speed, self._k_p[0], self._k_p[1])
 | 
						|
 | 
						|
  @property
 | 
						|
  def k_i(self):
 | 
						|
    return np.interp(self.speed, self._k_i[0], self._k_i[1])
 | 
						|
 | 
						|
  @property
 | 
						|
  def k_d(self):
 | 
						|
    return np.interp(self.speed, self._k_d[0], self._k_d[1])
 | 
						|
 | 
						|
  def reset(self):
 | 
						|
    self.p = 0.0
 | 
						|
    self.i = 0.0
 | 
						|
    self.d = 0.0
 | 
						|
    self.f = 0.0
 | 
						|
    self.control = 0
 | 
						|
 | 
						|
  def set_limits(self, pos_limit, neg_limit):
 | 
						|
    self.pos_limit = pos_limit
 | 
						|
    self.neg_limit = neg_limit
 | 
						|
 | 
						|
  def update(self, error, error_rate=0.0, speed=0.0, feedforward=0., freeze_integrator=False):
 | 
						|
    self.speed = speed
 | 
						|
    self.p = float(error) * self.k_p
 | 
						|
    self.f = feedforward * self.k_f
 | 
						|
    self.d = error_rate * self.k_d
 | 
						|
 | 
						|
    if not freeze_integrator:
 | 
						|
      i = self.i + error * self.k_i * self.i_rate
 | 
						|
 | 
						|
      # Don't allow windup if already clipping
 | 
						|
      test_control = self.p + i + self.d + self.f
 | 
						|
      i_upperbound = self.i if test_control > self.pos_limit else self.pos_limit
 | 
						|
      i_lowerbound = self.i if test_control < self.neg_limit else self.neg_limit
 | 
						|
      self.i = np.clip(i, i_lowerbound, i_upperbound)
 | 
						|
 | 
						|
    control = self.p + self.i + self.d + self.f
 | 
						|
    self.control = np.clip(control, self.neg_limit, self.pos_limit)
 | 
						|
    return self.control
 | 
						|
 |