You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							108 lines
						
					
					
						
							5.7 KiB
						
					
					
				
			
		
		
	
	
							108 lines
						
					
					
						
							5.7 KiB
						
					
					
				import math
 | 
						|
import numpy as np
 | 
						|
from collections import deque
 | 
						|
 | 
						|
from cereal import log
 | 
						|
from opendbc.car.lateral import FRICTION_THRESHOLD, get_friction
 | 
						|
from opendbc.car.tests.test_lateral_limits import MAX_LAT_JERK_UP
 | 
						|
from openpilot.common.constants import ACCELERATION_DUE_TO_GRAVITY
 | 
						|
from openpilot.common.filter_simple import FirstOrderFilter
 | 
						|
from openpilot.selfdrive.controls.lib.drive_helpers import MIN_SPEED
 | 
						|
from openpilot.selfdrive.controls.lib.latcontrol import LatControl
 | 
						|
from openpilot.common.pid import PIDController
 | 
						|
 | 
						|
# At higher speeds (25+mph) we can assume:
 | 
						|
# Lateral acceleration achieved by a specific car correlates to
 | 
						|
# torque applied to the steering rack. It does not correlate to
 | 
						|
# wheel slip, or to speed.
 | 
						|
 | 
						|
# This controller applies torque to achieve desired lateral
 | 
						|
# accelerations. To compensate for the low speed effects we
 | 
						|
# use a LOW_SPEED_FACTOR in the error. Additionally, there is
 | 
						|
# friction in the steering wheel that needs to be overcome to
 | 
						|
# move it at all, this is compensated for too.
 | 
						|
 | 
						|
LOW_SPEED_X = [0, 10, 20, 30]
 | 
						|
LOW_SPEED_Y = [15, 13, 10, 5]
 | 
						|
 | 
						|
 | 
						|
class LatControlTorque(LatControl):
 | 
						|
  def __init__(self, CP, CI, dt):
 | 
						|
    super().__init__(CP, CI, dt)
 | 
						|
    self.torque_params = CP.lateralTuning.torque.as_builder()
 | 
						|
    self.torque_from_lateral_accel = CI.torque_from_lateral_accel()
 | 
						|
    self.lateral_accel_from_torque = CI.lateral_accel_from_torque()
 | 
						|
    self.pid = PIDController(self.torque_params.kp, self.torque_params.ki, rate=1/self.dt)
 | 
						|
    self.update_limits()
 | 
						|
    self.steering_angle_deadzone_deg = self.torque_params.steeringAngleDeadzoneDeg
 | 
						|
    self.LATACCEL_REQUEST_BUFFER_NUM_FRAMES = int(1 / self.dt)
 | 
						|
    self.requested_lateral_accel_buffer = deque([0.] * self.LATACCEL_REQUEST_BUFFER_NUM_FRAMES , maxlen=self.LATACCEL_REQUEST_BUFFER_NUM_FRAMES)
 | 
						|
    self.previous_measurement = 0.0
 | 
						|
    self.measurement_rate_filter = FirstOrderFilter(0.0, 1 / (2 * np.pi * (MAX_LAT_JERK_UP - 0.5)), self.dt)
 | 
						|
 | 
						|
  def update_live_torque_params(self, latAccelFactor, latAccelOffset, friction):
 | 
						|
    self.torque_params.latAccelFactor = latAccelFactor
 | 
						|
    self.torque_params.latAccelOffset = latAccelOffset
 | 
						|
    self.torque_params.friction = friction
 | 
						|
    self.update_limits()
 | 
						|
 | 
						|
  def update_limits(self):
 | 
						|
    self.pid.set_limits(self.lateral_accel_from_torque(self.steer_max, self.torque_params),
 | 
						|
                        self.lateral_accel_from_torque(-self.steer_max, self.torque_params))
 | 
						|
 | 
						|
  def update(self, active, CS, VM, params, steer_limited_by_safety, desired_curvature, curvature_limited, lat_delay):
 | 
						|
    pid_log = log.ControlsState.LateralTorqueState.new_message()
 | 
						|
    if not active:
 | 
						|
      output_torque = 0.0
 | 
						|
      pid_log.active = False
 | 
						|
    else:
 | 
						|
      measured_curvature = -VM.calc_curvature(math.radians(CS.steeringAngleDeg - params.angleOffsetDeg), CS.vEgo, params.roll)
 | 
						|
      roll_compensation = params.roll * ACCELERATION_DUE_TO_GRAVITY
 | 
						|
      curvature_deadzone = abs(VM.calc_curvature(math.radians(self.steering_angle_deadzone_deg), CS.vEgo, 0.0))
 | 
						|
      lateral_accel_deadzone = curvature_deadzone * CS.vEgo ** 2
 | 
						|
 | 
						|
      delay_frames = int(np.clip(lat_delay / self.dt, 1, self.LATACCEL_REQUEST_BUFFER_NUM_FRAMES))
 | 
						|
      expected_lateral_accel = self.requested_lateral_accel_buffer[-delay_frames]
 | 
						|
      # TODO factor out lateral jerk from error to later replace it with delay independent alternative
 | 
						|
      future_desired_lateral_accel = desired_curvature * CS.vEgo ** 2
 | 
						|
      self.requested_lateral_accel_buffer.append(future_desired_lateral_accel)
 | 
						|
      gravity_adjusted_future_lateral_accel = future_desired_lateral_accel - roll_compensation
 | 
						|
      desired_lateral_jerk = (future_desired_lateral_accel - expected_lateral_accel) / lat_delay
 | 
						|
 | 
						|
      measurement = measured_curvature * CS.vEgo ** 2
 | 
						|
      measurement_rate = self.measurement_rate_filter.update((measurement - self.previous_measurement) / self.dt)
 | 
						|
      self.previous_measurement = measurement
 | 
						|
 | 
						|
      low_speed_factor = (np.interp(CS.vEgo, LOW_SPEED_X, LOW_SPEED_Y) / max(CS.vEgo, MIN_SPEED)) ** 2
 | 
						|
      setpoint = lat_delay * desired_lateral_jerk + expected_lateral_accel
 | 
						|
      error = setpoint - measurement
 | 
						|
      error_lsf = error + low_speed_factor / self.torque_params.kp * error
 | 
						|
 | 
						|
      # do error correction in lateral acceleration space, convert at end to handle non-linear torque responses correctly
 | 
						|
      pid_log.error = float(error_lsf)
 | 
						|
      ff = gravity_adjusted_future_lateral_accel
 | 
						|
      # latAccelOffset corrects roll compensation bias from device roll misalignment relative to car roll
 | 
						|
      ff -= self.torque_params.latAccelOffset
 | 
						|
      # TODO jerk is weighted by lat_delay for legacy reasons, but should be made independent of it
 | 
						|
      ff += get_friction(error, lateral_accel_deadzone, FRICTION_THRESHOLD, self.torque_params)
 | 
						|
 | 
						|
      freeze_integrator = steer_limited_by_safety or CS.steeringPressed or CS.vEgo < 5
 | 
						|
      output_lataccel = self.pid.update(pid_log.error,
 | 
						|
                                       -measurement_rate,
 | 
						|
                                        feedforward=ff,
 | 
						|
                                        speed=CS.vEgo,
 | 
						|
                                        freeze_integrator=freeze_integrator)
 | 
						|
      output_torque = self.torque_from_lateral_accel(output_lataccel, self.torque_params)
 | 
						|
 | 
						|
      pid_log.active = True
 | 
						|
      pid_log.p = float(self.pid.p)
 | 
						|
      pid_log.i = float(self.pid.i)
 | 
						|
      pid_log.d = float(self.pid.d)
 | 
						|
      pid_log.f = float(self.pid.f)
 | 
						|
      pid_log.output = float(-output_torque)  # TODO: log lat accel?
 | 
						|
      pid_log.actualLateralAccel = float(measurement)
 | 
						|
      pid_log.desiredLateralAccel = float(setpoint)
 | 
						|
      pid_log.saturated = bool(self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS, steer_limited_by_safety, curvature_limited))
 | 
						|
 | 
						|
    # TODO left is positive in this convention
 | 
						|
    return -output_torque, 0.0, pid_log
 | 
						|
 |