You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							111 lines
						
					
					
						
							4.2 KiB
						
					
					
				
			
		
		
	
	
							111 lines
						
					
					
						
							4.2 KiB
						
					
					
				#!/usr/bin/env python3
 | 
						|
 | 
						|
import sys
 | 
						|
import numpy as np
 | 
						|
 | 
						|
from openpilot.selfdrive.locationd.models.constants import ObservationKind
 | 
						|
 | 
						|
from rednose.helpers.kalmanfilter import KalmanFilter
 | 
						|
 | 
						|
if __name__=="__main__":
 | 
						|
  import sympy as sp
 | 
						|
  from rednose.helpers.ekf_sym import gen_code
 | 
						|
  from rednose.helpers.sympy_helpers import euler_rotate, rot_to_euler
 | 
						|
else:
 | 
						|
  from rednose.helpers.ekf_sym_pyx import EKF_sym_pyx
 | 
						|
 | 
						|
EARTH_G = 9.81
 | 
						|
 | 
						|
 | 
						|
class States:
 | 
						|
  NED_ORIENTATION = slice(0, 3)  # roll, pitch, yaw in rad
 | 
						|
  DEVICE_VELOCITY = slice(3, 6)  # ned velocity in m/s
 | 
						|
  ANGULAR_VELOCITY = slice(6, 9)  # roll, pitch and yaw rates in rad/s
 | 
						|
  GYRO_BIAS = slice(9, 12)  # roll, pitch and yaw gyroscope biases in rad/s
 | 
						|
  ACCELERATION = slice(12, 15)  # acceleration in device frame in m/s**2
 | 
						|
  ACCEL_BIAS = slice(15, 18)  # Acceletometer bias in m/s**2
 | 
						|
 | 
						|
 | 
						|
class PoseKalman(KalmanFilter):
 | 
						|
  name = "pose"
 | 
						|
 | 
						|
  # state
 | 
						|
  initial_x = np.array([0.0, 0.0, 0.0,
 | 
						|
                        0.0, 0.0, 0.0,
 | 
						|
                        0.0, 0.0, 0.0,
 | 
						|
                        0.0, 0.0, 0.0,
 | 
						|
                        0.0, 0.0, 0.0,
 | 
						|
                        0.0, 0.0, 0.0])
 | 
						|
  # state covariance
 | 
						|
  initial_P = np.diag([0.01**2, 0.01**2, 0.01**2,
 | 
						|
                       10**2, 10**2, 10**2,
 | 
						|
                       1**2, 1**2, 1**2,
 | 
						|
                       1**2, 1**2, 1**2,
 | 
						|
                       100**2, 100**2, 100**2,
 | 
						|
                       0.01**2, 0.01**2, 0.01**2])
 | 
						|
 | 
						|
  # process noise
 | 
						|
  Q = np.diag([0.001**2, 0.001**2, 0.001**2,
 | 
						|
               0.01**2, 0.01**2, 0.01**2,
 | 
						|
               0.1**2, 0.1**2, 0.1**2,
 | 
						|
               (0.005 / 100)**2, (0.005 / 100)**2, (0.005 / 100)**2,
 | 
						|
               3**2, 3**2, 3**2,
 | 
						|
               0.005**2, 0.005**2, 0.005**2])
 | 
						|
 | 
						|
  obs_noise = {ObservationKind.PHONE_GYRO: np.diag([0.025**2, 0.025**2, 0.025**2]),
 | 
						|
               ObservationKind.PHONE_ACCEL: np.diag([.5**2, .5**2, .5**2]),
 | 
						|
               ObservationKind.CAMERA_ODO_TRANSLATION: np.diag([0.5**2, 0.5**2, 0.5**2]),
 | 
						|
               ObservationKind.CAMERA_ODO_ROTATION: np.diag([0.05**2, 0.05**2, 0.05**2])}
 | 
						|
 | 
						|
  @staticmethod
 | 
						|
  def generate_code(generated_dir):
 | 
						|
    name = PoseKalman.name
 | 
						|
    dim_state = PoseKalman.initial_x.shape[0]
 | 
						|
    dim_state_err = PoseKalman.initial_P.shape[0]
 | 
						|
 | 
						|
    state_sym = sp.MatrixSymbol('state', dim_state, 1)
 | 
						|
    state = sp.Matrix(state_sym)
 | 
						|
    roll, pitch, yaw = state[States.NED_ORIENTATION, :]
 | 
						|
    velocity = state[States.DEVICE_VELOCITY, :]
 | 
						|
    angular_velocity = state[States.ANGULAR_VELOCITY, :]
 | 
						|
    vroll, vpitch, vyaw = angular_velocity
 | 
						|
    gyro_bias = state[States.GYRO_BIAS, :]
 | 
						|
    acceleration = state[States.ACCELERATION, :]
 | 
						|
    acc_bias = state[States.ACCEL_BIAS, :]
 | 
						|
 | 
						|
    dt = sp.Symbol('dt')
 | 
						|
 | 
						|
    ned_from_device = euler_rotate(roll, pitch, yaw)
 | 
						|
    device_from_ned = ned_from_device.T
 | 
						|
 | 
						|
    state_dot = sp.Matrix(np.zeros((dim_state, 1)))
 | 
						|
    state_dot[States.DEVICE_VELOCITY, :] = acceleration
 | 
						|
 | 
						|
    f_sym = state + dt * state_dot
 | 
						|
    device_from_device_t1 = euler_rotate(dt*vroll, dt*vpitch, dt*vyaw)
 | 
						|
    ned_from_device_t1 = ned_from_device * device_from_device_t1
 | 
						|
    f_sym[States.NED_ORIENTATION, :] = rot_to_euler(ned_from_device_t1)
 | 
						|
 | 
						|
    centripetal_acceleration = angular_velocity.cross(velocity)
 | 
						|
    gravity = sp.Matrix([0, 0, -EARTH_G])
 | 
						|
    h_gyro_sym = angular_velocity + gyro_bias
 | 
						|
    h_acc_sym = device_from_ned * gravity + acceleration + centripetal_acceleration + acc_bias
 | 
						|
    h_phone_rot_sym = angular_velocity
 | 
						|
    h_relative_motion_sym = velocity
 | 
						|
    obs_eqs = [
 | 
						|
      [h_gyro_sym, ObservationKind.PHONE_GYRO, None],
 | 
						|
      [h_acc_sym, ObservationKind.PHONE_ACCEL, None],
 | 
						|
      [h_relative_motion_sym, ObservationKind.CAMERA_ODO_TRANSLATION, None],
 | 
						|
      [h_phone_rot_sym, ObservationKind.CAMERA_ODO_ROTATION, None],
 | 
						|
    ]
 | 
						|
    gen_code(generated_dir, name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state_err)
 | 
						|
 | 
						|
  def __init__(self, generated_dir, max_rewind_age):
 | 
						|
    dim_state, dim_state_err = PoseKalman.initial_x.shape[0], PoseKalman.initial_P.shape[0]
 | 
						|
    self.filter = EKF_sym_pyx(generated_dir, self.name, PoseKalman.Q, PoseKalman.initial_x, PoseKalman.initial_P,
 | 
						|
                              dim_state, dim_state_err, max_rewind_age=max_rewind_age)
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
  generated_dir = sys.argv[2]
 | 
						|
  PoseKalman.generate_code(generated_dir)
 | 
						|
 |