openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

261 lines
10 KiB

#include <map>
#include <string>
#include <string.h>
#include <assert.h>
#include "thneed.h"
#include "common/util.h"
#include "common/clutil.h"
extern map<cl_program, string> g_program_source;
/*static int is_same_size_image(cl_mem a, cl_mem b) {
size_t a_width, a_height, a_depth, a_array_size, a_row_pitch, a_slice_pitch;
clGetImageInfo(a, CL_IMAGE_WIDTH, sizeof(a_width), &a_width, NULL);
clGetImageInfo(a, CL_IMAGE_HEIGHT, sizeof(a_height), &a_height, NULL);
clGetImageInfo(a, CL_IMAGE_DEPTH, sizeof(a_depth), &a_depth, NULL);
clGetImageInfo(a, CL_IMAGE_ARRAY_SIZE, sizeof(a_array_size), &a_array_size, NULL);
clGetImageInfo(a, CL_IMAGE_ROW_PITCH, sizeof(a_row_pitch), &a_row_pitch, NULL);
clGetImageInfo(a, CL_IMAGE_SLICE_PITCH, sizeof(a_slice_pitch), &a_slice_pitch, NULL);
size_t b_width, b_height, b_depth, b_array_size, b_row_pitch, b_slice_pitch;
clGetImageInfo(b, CL_IMAGE_WIDTH, sizeof(b_width), &b_width, NULL);
clGetImageInfo(b, CL_IMAGE_HEIGHT, sizeof(b_height), &b_height, NULL);
clGetImageInfo(b, CL_IMAGE_DEPTH, sizeof(b_depth), &b_depth, NULL);
clGetImageInfo(b, CL_IMAGE_ARRAY_SIZE, sizeof(b_array_size), &b_array_size, NULL);
clGetImageInfo(b, CL_IMAGE_ROW_PITCH, sizeof(b_row_pitch), &b_row_pitch, NULL);
clGetImageInfo(b, CL_IMAGE_SLICE_PITCH, sizeof(b_slice_pitch), &b_slice_pitch, NULL);
return (a_width == b_width) && (a_height == b_height) &&
(a_depth == b_depth) && (a_array_size == b_array_size) &&
(a_row_pitch == b_row_pitch) && (a_slice_pitch == b_slice_pitch);
}*/
static cl_mem make_image_like(cl_context context, cl_mem val) {
cl_image_format format;
size_t width, height, row_pitch;
clGetImageInfo(val, CL_IMAGE_FORMAT, sizeof(format), &format, NULL);
assert(format.image_channel_order == CL_RGBA);
assert(format.image_channel_data_type == CL_HALF_FLOAT);
clGetImageInfo(val, CL_IMAGE_WIDTH, sizeof(width), &width, NULL);
clGetImageInfo(val, CL_IMAGE_HEIGHT, sizeof(height), &height, NULL);
clGetImageInfo(val, CL_IMAGE_ROW_PITCH, sizeof(row_pitch), &row_pitch, NULL);
cl_image_desc desc = {0};
desc.image_type = CL_MEM_OBJECT_IMAGE2D;
desc.image_width = width;
desc.image_height = height;
desc.image_row_pitch = row_pitch;
cl_mem buf = clCreateBuffer(context, CL_MEM_READ_WRITE, row_pitch*height, NULL, NULL);
assert(buf != NULL);
desc.buffer = buf;
cl_int err;
cl_mem tmp = clCreateImage(context, CL_MEM_READ_WRITE, &format, &desc, NULL, &err);
//printf("got %d for image %zux%zu %zu\n", err, width, height, row_pitch);
assert(tmp != NULL);
return tmp;
}
// convolution_horizontal_reduced_reads_1x1 is 66% of the model runtime
// make that faster and the model gets faster
// this cuts ~2 ms off the model runtime right now
int Thneed::optimize() {
const char *kernel_path = getenv("KERNEL_PATH");
if (!kernel_path) { kernel_path = "/data/openpilot/selfdrive/modeld/thneed/kernels"; printf("no KERNEL_PATH set, defaulting to %s\n", kernel_path); }
string convolution_;
{
char fn[0x100];
snprintf(fn, sizeof(fn), "%s/%s.cl", kernel_path, "convolution_");
convolution_ = util::read_file(fn);
}
// load custom kernels
map<string, cl_program> g_programs;
for (auto &k : kq) {
// replace program?
if (g_programs.find(k->name) == g_programs.end()) {
char fn[0x100];
snprintf(fn, sizeof(fn), "%s/%s.cl", kernel_path, k->name.c_str());
if (util::file_exists(fn)) {
string kernel_src = util::read_file(fn);
if (k->name.rfind("convolution_", 0) == 0) {
kernel_src += convolution_;
}
printf("building kernel %s with len %lu\n", k->name.c_str(), kernel_src.length());
k->program = cl_program_from_source(context, device_id, kernel_src);
// save in cache
g_programs[k->name] = k->program;
g_program_source[k->program] = kernel_src;
} else {
g_programs[k->name] = NULL;
}
} else {
// cached replacement
if (g_programs[k->name] != NULL) {
k->program = g_programs[k->name];
}
}
// hack in accumulator to convolution_horizontal_reduced_reads_1x1
if (k->name == "convolution_horizontal_reduced_reads_1x1") {
k->arg_names.push_back("doAccumulate");
short doAccumulate = 0;
k->args.push_back(string((char *)&doAccumulate, sizeof(doAccumulate)));
k->args_size.push_back(2);
k->arg_names.push_back("accumulator");
k->args.push_back(k->args[k->get_arg_num("output")]);
k->args_size.push_back(8);
k->num_args += 2;
}
// assert that parameters + batchNormBiases are not used
// since they aren't supported in custom replacement kernels
if (k->name == "convolution_horizontal_reduced_reads_1x1" ||
k->name == "convolution_horizontal_reduced_reads" ||
k->name == "convolution_horizontal_reduced_reads_5_outputs") {
string p1 = k->args[k->get_arg_num("parameters")];
string p2 = k->args[k->get_arg_num("batchNormBiases")];
assert(p1.length() == 8 && *((uint64_t*)p1.data()) == 0);
assert(p2.length() == 8 && *((uint64_t*)p2.data()) == 0);
}
}
// optimizer
size_t start_size;
do {
start_size = kq.size();
// get optimizations
map<string, string> replacements;
for (int i = 0; i < kq.size(); i++) {
// fusing elementwise_sum + activate_image will save 3 enqueues
// delete useless copy layers
// saves ~0.7 ms
/*if (kq[i]->name == "concatenation" || kq[i]->name == "flatten") {
string in = kq[i]->args[kq[i]->get_arg_num("input")];
string out = kq[i]->args[kq[i]->get_arg_num("output")];
if (is_same_size_image(*(cl_mem*)in.data(), *(cl_mem*)out.data())) {
cl_mem tmp = make_image_like(context, *(cl_mem *)in.data());
replacements[in] = string((char *)&tmp, sizeof(tmp));
replacements[out] = string((char *)&tmp, sizeof(tmp));
kq.erase(kq.begin()+i); --i;
}
}*/
// NOTE: if activations/accumulation are done in the wrong order, this will be wrong
// fuse activations into convs and fc_Wtx
// saves ~1.5 ms
// NOTE: this changes the outputs because of rounding, should be better now!
if (i != 0 && kq[i]->name == "activate_image") {
if (kq[i-1]->name == "convolution_horizontal_reduced_reads_1x1" ||
kq[i-1]->name == "convolution_horizontal_reduced_reads_5_outputs" ||
kq[i-1]->name == "convolution_horizontal_reduced_reads" ||
kq[i-1]->name == "convolution_horizontal_reduced_reads_depthwise" ||
kq[i-1]->name == "convolution_horizontal_reduced_reads_depthwise_stride_1" ||
kq[i-1]->name == "fc_Wtx") {
string lastout = kq[i-1]->args[kq[i-1]->get_arg_num("output")];
string in = kq[i]->args[kq[i]->get_arg_num("input")];
string out = kq[i]->args[kq[i]->get_arg_num("output")];
if (lastout == in) {
short neuron = *(int*)kq[i]->args[kq[i]->get_arg_num("neuron")].data();
assert(neuron <= 5);
// ELU isn't supported in fc_Wtx
assert(!(kq[i-1]->name == "fc_Wtx" && neuron == 5));
kq[i-1]->args[kq[i-1]->get_arg_num("neuron")] = string((char *)&neuron, sizeof(neuron));
cl_mem tmp = make_image_like(context, *(cl_mem *)lastout.data());
replacements[in] = string((char *)&tmp, sizeof(tmp));
replacements[out] = string((char *)&tmp, sizeof(tmp));
kq.erase(kq.begin()+i); --i;
}
}
}
// fuse accumulation into convs and fc_Wtx
if (i != 0 && kq[i]->name == "elementwise_sum") {
if (kq[i-1]->name == "convolution_horizontal_reduced_reads_1x1" ||
kq[i-1]->name == "fc_Wtx") {
string lastout = kq[i-1]->args[kq[i-1]->get_arg_num("output")];
string a = kq[i]->args[kq[i]->get_arg_num("a")];
string b = kq[i]->args[kq[i]->get_arg_num("b")];
string out = kq[i]->args[kq[i]->get_arg_num("output")];
if (lastout == a) {
kq[i-1]->args[kq[i-1]->get_arg_num("accumulator")] = b;
} else if (lastout == b) {
kq[i-1]->args[kq[i-1]->get_arg_num("accumulator")] = a;
} else {
continue;
}
cl_mem tmp = make_image_like(context, *(cl_mem *)lastout.data());
replacements[lastout] = string((char *)&tmp, sizeof(tmp));
replacements[out] = string((char *)&tmp, sizeof(tmp));
short doAccumulate = 1;
kq[i-1]->args[kq[i-1]->get_arg_num("doAccumulate")] = string((char *)&doAccumulate, sizeof(doAccumulate));
kq.erase(kq.begin()+i); --i;
}
}
}
// remap inputs and outputs, and clear the kernels
for (int i = 0; i < kq.size(); i++) {
kq[i]->kernel = NULL;
for (int j = 0; j < kq[i]->num_args; j++) {
if (replacements.find(kq[i]->args[j]) != replacements.end()) {
kq[i]->args[j] = replacements[kq[i]->args[j]];
}
}
}
printf("optimize %lu -> %lu\n", start_size, kq.size());
} while (kq.size() != start_size);
size_t work_group_size = 0;
clGetDeviceInfo(device_id, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(work_group_size), &work_group_size, NULL);
printf("max work group size %lu\n", work_group_size);
// local work group optimizer
for (auto &k : kq) {
// only do it for convs, since others might share memory
if (k->name.rfind("convolution_", 0) == 0) {
int best = -1;
if (k->local_work_size[0] * k->local_work_size[1] * k->local_work_size[2] < work_group_size/2) {
uint64_t base_time = k->benchmark();
uint64_t best_time = base_time;
for (int i = 0; i < 3; i++) {
k->local_work_size[i] *= 2;
uint64_t this_time = k->benchmark();
if (this_time < best_time) {
best = i;
best_time = this_time;
}
k->local_work_size[i] /= 2;
}
if (best != -1) {
k->local_work_size[best] *= 2;
//printf("%s %.2f ms doubled %d to %.2f ms\n", k->name.c_str(), base_time/1e6, best, best_time/1e6);
}
}
}
}
return 0;
}