You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
562 lines
25 KiB
562 lines
25 KiB
#!/usr/bin/env python3
|
|
|
|
import sys
|
|
|
|
import numpy as np
|
|
import sympy as sp
|
|
|
|
from rednose.helpers.ekf_sym import EKF_sym, gen_code
|
|
from rednose.helpers.lst_sq_computer import LstSqComputer
|
|
from rednose.helpers.sympy_helpers import euler_rotate, quat_matrix_r, quat_rotate
|
|
|
|
from selfdrive.locationd.models.constants import ObservationKind
|
|
from selfdrive.locationd.models.gnss_helpers import parse_pr, parse_prr
|
|
|
|
EARTH_GM = 3.986005e14 # m^3/s^2 (gravitational constant * mass of earth)
|
|
|
|
class States():
|
|
ECEF_POS = slice(0, 3) # x, y and z in ECEF in meters
|
|
ECEF_ORIENTATION = slice(3, 7) # quat for orientation of phone in ecef
|
|
ECEF_VELOCITY = slice(7, 10) # ecef velocity in m/s
|
|
ANGULAR_VELOCITY = slice(10, 13) # roll, pitch and yaw rates in device frame in radians/s
|
|
CLOCK_BIAS = slice(13, 14) # clock bias in light-meters,
|
|
CLOCK_DRIFT = slice(14, 15) # clock drift in light-meters/s,
|
|
GYRO_BIAS = slice(15, 18) # roll, pitch and yaw biases
|
|
ODO_SCALE_UNUSED = slice(18, 19) # odometer scale
|
|
ACCELERATION = slice(19, 22) # Acceleration in device frame in m/s**2
|
|
FOCAL_SCALE_UNUSED = slice(22, 23) # focal length scale
|
|
IMU_FROM_DEVICE_EULER = slice(23, 26) # imu offset angles in radians
|
|
GLONASS_BIAS = slice(26, 27) # GLONASS bias in m expressed as bias + freq_num*freq_slope
|
|
GLONASS_FREQ_SLOPE = slice(27, 28) # GLONASS bias in m expressed as bias + freq_num*freq_slope
|
|
CLOCK_ACCELERATION = slice(28, 29) # clock acceleration in light-meters/s**2,
|
|
ACCELEROMETER_SCALE_UNUSED = slice(29, 30) # scale of mems accelerometer
|
|
ACCELEROMETER_BIAS = slice(30, 33) # bias of mems accelerometer
|
|
# TODO the offset is likely a translation of the sensor, not a rotation of the camera
|
|
WIDE_FROM_DEVICE_EULER = slice(33, 36) # wide camera offset angles in radians (tici only)
|
|
# We curently do not use ACCELEROMETER_SCALE to avoid instability due to too many free variables (ACCELEROMETER_SCALE, ACCELEROMETER_BIAS, IMU_FROM_DEVICE_EULER).
|
|
# From experiments we see that ACCELEROMETER_BIAS is more correct than ACCELEROMETER_SCALE
|
|
|
|
# Error-state has different slices because it is an ESKF
|
|
ECEF_POS_ERR = slice(0, 3)
|
|
ECEF_ORIENTATION_ERR = slice(3, 6) # euler angles for orientation error
|
|
ECEF_VELOCITY_ERR = slice(6, 9)
|
|
ANGULAR_VELOCITY_ERR = slice(9, 12)
|
|
CLOCK_BIAS_ERR = slice(12, 13)
|
|
CLOCK_DRIFT_ERR = slice(13, 14)
|
|
GYRO_BIAS_ERR = slice(14, 17)
|
|
ODO_SCALE_ERR_UNUSED = slice(17, 18)
|
|
ACCELERATION_ERR = slice(18, 21)
|
|
FOCAL_SCALE_ERR_UNUSED = slice(21, 22)
|
|
IMU_FROM_DEVICE_EULER_ERR = slice(22, 25)
|
|
GLONASS_BIAS_ERR = slice(25, 26)
|
|
GLONASS_FREQ_SLOPE_ERR = slice(26, 27)
|
|
CLOCK_ACCELERATION_ERR = slice(27, 28)
|
|
ACCELEROMETER_SCALE_ERR_UNUSED = slice(28, 29)
|
|
ACCELEROMETER_BIAS_ERR = slice(29, 32)
|
|
WIDE_FROM_DEVICE_EULER_ERR = slice(32, 35)
|
|
|
|
|
|
class LocKalman():
|
|
name = "loc"
|
|
x_initial = np.array([0, 0, 0,
|
|
1, 0, 0, 0,
|
|
0, 0, 0,
|
|
0, 0, 0,
|
|
0, 0,
|
|
0, 0, 0,
|
|
1,
|
|
0, 0, 0,
|
|
1,
|
|
0, 0, 0,
|
|
0, 0,
|
|
0,
|
|
1,
|
|
0, 0, 0,
|
|
0, 0, 0], dtype=np.float64)
|
|
|
|
# state covariance
|
|
P_initial = np.diag([1e16, 1e16, 1e16,
|
|
10**2, 10**2, 10**2,
|
|
10**2, 10**2, 10**2,
|
|
1**2, 1**2, 1**2,
|
|
1e14, (100)**2,
|
|
0.05**2, 0.05**2, 0.05**2,
|
|
0.02**2,
|
|
2**2, 2**2, 2**2,
|
|
0.01**2,
|
|
0.01**2, 0.01**2, 0.01**2,
|
|
10**2, 1**2,
|
|
0.2**2,
|
|
0.05**2,
|
|
0.05**2, 0.05**2, 0.05**2,
|
|
0.01**2, 0.01**2, 0.01**2])
|
|
|
|
|
|
# measurements that need to pass mahalanobis distance outlier rejector
|
|
maha_test_kinds = [ObservationKind.ORB_FEATURES, ObservationKind.ORB_FEATURES_WIDE] # , ObservationKind.PSEUDORANGE, ObservationKind.PSEUDORANGE_RATE]
|
|
dim_augment = 7
|
|
dim_augment_err = 6
|
|
|
|
@staticmethod
|
|
def generate_code(generated_dir, N=4):
|
|
dim_augment = LocKalman.dim_augment
|
|
dim_augment_err = LocKalman.dim_augment_err
|
|
|
|
dim_main = LocKalman.x_initial.shape[0]
|
|
dim_main_err = LocKalman.P_initial.shape[0]
|
|
dim_state = dim_main + dim_augment * N
|
|
dim_state_err = dim_main_err + dim_augment_err * N
|
|
maha_test_kinds = LocKalman.maha_test_kinds
|
|
|
|
name = f"{LocKalman.name}_{N}"
|
|
|
|
# make functions and jacobians with sympy
|
|
# state variables
|
|
state_sym = sp.MatrixSymbol('state', dim_state, 1)
|
|
state = sp.Matrix(state_sym)
|
|
x, y, z = state[States.ECEF_POS, :]
|
|
q = state[States.ECEF_ORIENTATION, :]
|
|
v = state[States.ECEF_VELOCITY, :]
|
|
vx, vy, vz = v
|
|
omega = state[States.ANGULAR_VELOCITY, :]
|
|
vroll, vpitch, vyaw = omega
|
|
cb = state[States.CLOCK_BIAS, :]
|
|
cd = state[States.CLOCK_DRIFT, :]
|
|
roll_bias, pitch_bias, yaw_bias = state[States.GYRO_BIAS, :]
|
|
acceleration = state[States.ACCELERATION, :]
|
|
imu_from_device_euler = state[States.IMU_FROM_DEVICE_EULER, :]
|
|
imu_from_device_euler[0, 0] = 0 # not observable enough
|
|
imu_from_device_euler[2, 0] = 0 # not observable enough
|
|
glonass_bias = state[States.GLONASS_BIAS, :]
|
|
glonass_freq_slope = state[States.GLONASS_FREQ_SLOPE, :]
|
|
ca = state[States.CLOCK_ACCELERATION, :]
|
|
accel_bias = state[States.ACCELEROMETER_BIAS, :]
|
|
wide_from_device_euler = state[States.WIDE_FROM_DEVICE_EULER, :]
|
|
wide_from_device_euler[0, 0] = 0 # not observable enough
|
|
|
|
dt = sp.Symbol('dt')
|
|
|
|
# calibration and attitude rotation matrices
|
|
quat_rot = quat_rotate(*q)
|
|
|
|
# Got the quat predict equations from here
|
|
# A New Quaternion-Based Kalman Filter for
|
|
# Real-Time Attitude Estimation Using the Two-Step
|
|
# Geometrically-Intuitive Correction Algorithm
|
|
A = 0.5 * sp.Matrix([[0, -vroll, -vpitch, -vyaw],
|
|
[vroll, 0, vyaw, -vpitch],
|
|
[vpitch, -vyaw, 0, vroll],
|
|
[vyaw, vpitch, -vroll, 0]])
|
|
q_dot = A * q
|
|
|
|
# Time derivative of the state as a function of state
|
|
state_dot = sp.Matrix(np.zeros((dim_state, 1)))
|
|
state_dot[States.ECEF_POS, :] = v
|
|
state_dot[States.ECEF_ORIENTATION, :] = q_dot
|
|
state_dot[States.ECEF_VELOCITY, 0] = quat_rot * acceleration
|
|
state_dot[States.CLOCK_BIAS, :] = cd
|
|
state_dot[States.CLOCK_DRIFT, :] = ca
|
|
|
|
# Basic descretization, 1st order intergrator
|
|
# Can be pretty bad if dt is big
|
|
f_sym = state + dt * state_dot
|
|
|
|
state_err_sym = sp.MatrixSymbol('state_err', dim_state_err, 1)
|
|
state_err = sp.Matrix(state_err_sym)
|
|
quat_err = state_err[States.ECEF_ORIENTATION_ERR, :]
|
|
v_err = state_err[States.ECEF_VELOCITY_ERR, :]
|
|
omega_err = state_err[States.ANGULAR_VELOCITY_ERR, :]
|
|
cd_err = state_err[States.CLOCK_DRIFT_ERR, :]
|
|
acceleration_err = state_err[States.ACCELERATION_ERR, :]
|
|
ca_err = state_err[States.CLOCK_ACCELERATION_ERR, :]
|
|
|
|
# Time derivative of the state error as a function of state error and state
|
|
quat_err_matrix = euler_rotate(quat_err[0], quat_err[1], quat_err[2])
|
|
q_err_dot = quat_err_matrix * quat_rot * (omega + omega_err)
|
|
state_err_dot = sp.Matrix(np.zeros((dim_state_err, 1)))
|
|
state_err_dot[States.ECEF_POS_ERR, :] = v_err
|
|
state_err_dot[States.ECEF_ORIENTATION_ERR, :] = q_err_dot
|
|
state_err_dot[States.ECEF_VELOCITY_ERR, :] = quat_err_matrix * quat_rot * (acceleration + acceleration_err)
|
|
state_err_dot[States.CLOCK_BIAS_ERR, :] = cd_err
|
|
state_err_dot[States.CLOCK_DRIFT_ERR, :] = ca_err
|
|
f_err_sym = state_err + dt * state_err_dot
|
|
|
|
# convenient indexing
|
|
# q idxs are for quats and p idxs are for other
|
|
q_idxs = [[3, dim_augment]] + [[dim_main + n * dim_augment + 3, dim_main + (n + 1) * dim_augment] for n in range(N)]
|
|
q_err_idxs = [[3, dim_augment_err]] + [[dim_main_err + n * dim_augment_err + 3, dim_main_err + (n + 1) * dim_augment_err] for n in range(N)]
|
|
p_idxs = [[0, 3]] + [[dim_augment, dim_main]] + [[dim_main + n * dim_augment, dim_main + n * dim_augment + 3] for n in range(N)]
|
|
p_err_idxs = [[0, 3]] + [[dim_augment_err, dim_main_err]] + [[dim_main_err + n * dim_augment_err, dim_main_err + n * dim_augment_err + 3] for n in range(N)]
|
|
|
|
# Observation matrix modifier
|
|
H_mod_sym = sp.Matrix(np.zeros((dim_state, dim_state_err)))
|
|
for p_idx, p_err_idx in zip(p_idxs, p_err_idxs):
|
|
H_mod_sym[p_idx[0]:p_idx[1], p_err_idx[0]:p_err_idx[1]] = np.eye(p_idx[1] - p_idx[0])
|
|
for q_idx, q_err_idx in zip(q_idxs, q_err_idxs):
|
|
H_mod_sym[q_idx[0]:q_idx[1], q_err_idx[0]:q_err_idx[1]] = 0.5 * quat_matrix_r(state[q_idx[0]:q_idx[1]])[:, 1:]
|
|
|
|
# these error functions are defined so that say there
|
|
# is a nominal x and true x:
|
|
# true x = err_function(nominal x, delta x)
|
|
# delta x = inv_err_function(nominal x, true x)
|
|
nom_x = sp.MatrixSymbol('nom_x', dim_state, 1)
|
|
true_x = sp.MatrixSymbol('true_x', dim_state, 1)
|
|
delta_x = sp.MatrixSymbol('delta_x', dim_state_err, 1)
|
|
|
|
err_function_sym = sp.Matrix(np.zeros((dim_state, 1)))
|
|
for q_idx, q_err_idx in zip(q_idxs, q_err_idxs):
|
|
delta_quat = sp.Matrix(np.ones(4))
|
|
delta_quat[1:, :] = sp.Matrix(0.5 * delta_x[q_err_idx[0]: q_err_idx[1], :])
|
|
err_function_sym[q_idx[0]:q_idx[1], 0] = quat_matrix_r(nom_x[q_idx[0]:q_idx[1], 0]) * delta_quat
|
|
for p_idx, p_err_idx in zip(p_idxs, p_err_idxs):
|
|
err_function_sym[p_idx[0]:p_idx[1], :] = sp.Matrix(nom_x[p_idx[0]:p_idx[1], :] + delta_x[p_err_idx[0]:p_err_idx[1], :])
|
|
|
|
inv_err_function_sym = sp.Matrix(np.zeros((dim_state_err, 1)))
|
|
for p_idx, p_err_idx in zip(p_idxs, p_err_idxs):
|
|
inv_err_function_sym[p_err_idx[0]:p_err_idx[1], 0] = sp.Matrix(-nom_x[p_idx[0]:p_idx[1], 0] + true_x[p_idx[0]:p_idx[1], 0])
|
|
for q_idx, q_err_idx in zip(q_idxs, q_err_idxs):
|
|
delta_quat = quat_matrix_r(nom_x[q_idx[0]:q_idx[1], 0]).T * true_x[q_idx[0]:q_idx[1], 0]
|
|
inv_err_function_sym[q_err_idx[0]:q_err_idx[1], 0] = sp.Matrix(2 * delta_quat[1:])
|
|
|
|
eskf_params = [[err_function_sym, nom_x, delta_x],
|
|
[inv_err_function_sym, nom_x, true_x],
|
|
H_mod_sym, f_err_sym, state_err_sym]
|
|
#
|
|
# Observation functions
|
|
#
|
|
|
|
# extra args
|
|
sat_pos_freq_sym = sp.MatrixSymbol('sat_pos', 4, 1)
|
|
sat_pos_vel_sym = sp.MatrixSymbol('sat_pos_vel', 6, 1)
|
|
# sat_los_sym = sp.MatrixSymbol('sat_los', 3, 1)
|
|
|
|
# expand extra args
|
|
sat_x, sat_y, sat_z, glonass_freq = sat_pos_freq_sym
|
|
sat_vx, sat_vy, sat_vz = sat_pos_vel_sym[3:]
|
|
|
|
h_pseudorange_sym = sp.Matrix([
|
|
sp.sqrt(
|
|
(x - sat_x)**2 +
|
|
(y - sat_y)**2 +
|
|
(z - sat_z)**2
|
|
) + cb[0]
|
|
])
|
|
|
|
h_pseudorange_glonass_sym = sp.Matrix([
|
|
sp.sqrt(
|
|
(x - sat_x)**2 +
|
|
(y - sat_y)**2 +
|
|
(z - sat_z)**2
|
|
) + cb[0] + glonass_bias[0] + glonass_freq_slope[0] * glonass_freq
|
|
])
|
|
|
|
los_vector = (sp.Matrix(sat_pos_vel_sym[0:3]) - sp.Matrix([x, y, z]))
|
|
los_vector = los_vector / sp.sqrt(los_vector[0]**2 + los_vector[1]**2 + los_vector[2]**2)
|
|
h_pseudorange_rate_sym = sp.Matrix([los_vector[0] * (sat_vx - vx) +
|
|
los_vector[1] * (sat_vy - vy) +
|
|
los_vector[2] * (sat_vz - vz) +
|
|
cd[0]])
|
|
|
|
imu_from_device = euler_rotate(*imu_from_device_euler)
|
|
h_gyro_sym = imu_from_device * sp.Matrix([vroll + roll_bias,
|
|
vpitch + pitch_bias,
|
|
vyaw + yaw_bias])
|
|
|
|
pos = sp.Matrix([x, y, z])
|
|
# add 1 for stability, prevent division by 0
|
|
gravity = quat_rot.T * ((EARTH_GM / ((x**2 + y**2 + z**2 + 1)**(3.0 / 2.0))) * pos)
|
|
h_acc_sym = imu_from_device * (gravity + acceleration + accel_bias)
|
|
h_acc_stationary_sym = acceleration
|
|
h_phone_rot_sym = sp.Matrix([vroll, vpitch, vyaw])
|
|
h_relative_motion = sp.Matrix(quat_rot.T * v)
|
|
|
|
obs_eqs = [[h_gyro_sym, ObservationKind.PHONE_GYRO, None],
|
|
[h_phone_rot_sym, ObservationKind.NO_ROT, None],
|
|
[h_acc_sym, ObservationKind.PHONE_ACCEL, None],
|
|
[h_pseudorange_sym, ObservationKind.PSEUDORANGE_GPS, sat_pos_freq_sym],
|
|
[h_pseudorange_glonass_sym, ObservationKind.PSEUDORANGE_GLONASS, sat_pos_freq_sym],
|
|
[h_pseudorange_rate_sym, ObservationKind.PSEUDORANGE_RATE_GPS, sat_pos_vel_sym],
|
|
[h_pseudorange_rate_sym, ObservationKind.PSEUDORANGE_RATE_GLONASS, sat_pos_vel_sym],
|
|
[h_relative_motion, ObservationKind.CAMERA_ODO_TRANSLATION, None],
|
|
[h_phone_rot_sym, ObservationKind.CAMERA_ODO_ROTATION, None],
|
|
[h_acc_stationary_sym, ObservationKind.NO_ACCEL, None]]
|
|
|
|
wide_from_device = euler_rotate(*wide_from_device_euler)
|
|
# MSCKF configuration
|
|
if N > 0:
|
|
# experimentally found this is correct value for imx298 with 910 focal length
|
|
# this is a variable so it can change with focus, but we disregard that for now
|
|
# TODO: this isn't correct for tici
|
|
focal_scale = 1.01
|
|
# Add observation functions for orb feature tracks
|
|
track_epos_sym = sp.MatrixSymbol('track_epos_sym', 3, 1)
|
|
track_x, track_y, track_z = track_epos_sym
|
|
h_track_sym = sp.Matrix(np.zeros(((1 + N) * 2, 1)))
|
|
h_track_wide_cam_sym = sp.Matrix(np.zeros(((1 + N) * 2, 1)))
|
|
|
|
track_pos_sym = sp.Matrix([track_x - x, track_y - y, track_z - z])
|
|
track_pos_rot_sym = quat_rot.T * track_pos_sym
|
|
track_pos_rot_wide_cam_sym = wide_from_device * track_pos_rot_sym
|
|
h_track_sym[-2:, :] = sp.Matrix([focal_scale * (track_pos_rot_sym[1] / track_pos_rot_sym[0]),
|
|
focal_scale * (track_pos_rot_sym[2] / track_pos_rot_sym[0])])
|
|
h_track_wide_cam_sym[-2:, :] = sp.Matrix([focal_scale * (track_pos_rot_wide_cam_sym[1] / track_pos_rot_wide_cam_sym[0]),
|
|
focal_scale * (track_pos_rot_wide_cam_sym[2] / track_pos_rot_wide_cam_sym[0])])
|
|
|
|
h_msckf_test_sym = sp.Matrix(np.zeros(((1 + N) * 3, 1)))
|
|
h_msckf_test_sym[-3:, :] = track_pos_sym
|
|
|
|
for n in range(N):
|
|
idx = dim_main + n * dim_augment
|
|
# err_idx = dim_main_err + n * dim_augment_err # FIXME: Why is this not used?
|
|
x, y, z = state[idx:idx + 3]
|
|
q = state[idx + 3:idx + 7]
|
|
quat_rot = quat_rotate(*q)
|
|
track_pos_sym = sp.Matrix([track_x - x, track_y - y, track_z - z])
|
|
track_pos_rot_sym = quat_rot.T * track_pos_sym
|
|
track_pos_rot_wide_cam_sym = wide_from_device * track_pos_rot_sym
|
|
h_track_sym[n * 2:n * 2 + 2, :] = sp.Matrix([focal_scale * (track_pos_rot_sym[1] / track_pos_rot_sym[0]),
|
|
focal_scale * (track_pos_rot_sym[2] / track_pos_rot_sym[0])])
|
|
h_track_wide_cam_sym[n * 2: n * 2 + 2, :] = sp.Matrix([focal_scale * (track_pos_rot_wide_cam_sym[1] / track_pos_rot_wide_cam_sym[0]),
|
|
focal_scale * (track_pos_rot_wide_cam_sym[2] / track_pos_rot_wide_cam_sym[0])])
|
|
h_msckf_test_sym[n * 3:n * 3 + 3, :] = track_pos_sym
|
|
|
|
obs_eqs.append([h_msckf_test_sym, ObservationKind.MSCKF_TEST, track_epos_sym])
|
|
obs_eqs.append([h_track_sym, ObservationKind.ORB_FEATURES, track_epos_sym])
|
|
obs_eqs.append([h_track_wide_cam_sym, ObservationKind.ORB_FEATURES_WIDE, track_epos_sym])
|
|
obs_eqs.append([h_track_sym, ObservationKind.FEATURE_TRACK_TEST, track_epos_sym])
|
|
msckf_params = [dim_main, dim_augment, dim_main_err, dim_augment_err, N, [ObservationKind.MSCKF_TEST, ObservationKind.ORB_FEATURES, ObservationKind.ORB_FEATURES_WIDE]]
|
|
else:
|
|
msckf_params = None
|
|
gen_code(generated_dir, name, f_sym, dt, state_sym, obs_eqs, dim_state, dim_state_err, eskf_params, msckf_params, maha_test_kinds)
|
|
|
|
def __init__(self, generated_dir, N=4, erratic_clock=False):
|
|
name = f"{self.name}_{N}"
|
|
|
|
|
|
# process noise
|
|
clock_error_drift = 100.0 if erratic_clock else 0.1
|
|
self.Q = np.diag([0.03**2, 0.03**2, 0.03**2,
|
|
0.0**2, 0.0**2, 0.0**2,
|
|
0.0**2, 0.0**2, 0.0**2,
|
|
0.1**2, 0.1**2, 0.1**2,
|
|
(clock_error_drift)**2, (0)**2,
|
|
(0.005 / 100)**2, (0.005 / 100)**2, (0.005 / 100)**2,
|
|
(0.02 / 100)**2,
|
|
3**2, 3**2, 3**2,
|
|
0.001**2,
|
|
(0.05 / 60)**2, (0.05 / 60)**2, (0.05 / 60)**2,
|
|
(.1)**2, (.01)**2,
|
|
0.005**2,
|
|
(0.02 / 100)**2,
|
|
(0.005 / 100)**2, (0.005 / 100)**2, (0.005 / 100)**2,
|
|
(0.05 / 60)**2, (0.05 / 60)**2, (0.05 / 60)**2])
|
|
|
|
|
|
self.obs_noise = {ObservationKind.ODOMETRIC_SPEED: np.atleast_2d(0.2**2),
|
|
ObservationKind.PHONE_GYRO: np.diag([0.025**2, 0.025**2, 0.025**2]),
|
|
ObservationKind.PHONE_ACCEL: np.diag([.5**2, .5**2, .5**2]),
|
|
ObservationKind.CAMERA_ODO_ROTATION: np.diag([0.05**2, 0.05**2, 0.05**2]),
|
|
ObservationKind.IMU_FRAME: np.diag([0.05**2, 0.05**2, 0.05**2]),
|
|
ObservationKind.NO_ROT: np.diag([0.0025**2, 0.0025**2, 0.0025**2]),
|
|
ObservationKind.ECEF_POS: np.diag([5**2, 5**2, 5**2]),
|
|
ObservationKind.NO_ACCEL: np.diag([0.0025**2, 0.0025**2, 0.0025**2])}
|
|
|
|
# MSCKF stuff
|
|
self.N = N
|
|
self.dim_main = LocKalman.x_initial.shape[0]
|
|
self.dim_main_err = LocKalman.P_initial.shape[0]
|
|
self.dim_state = self.dim_main + self.dim_augment * self.N
|
|
self.dim_state_err = self.dim_main_err + self.dim_augment_err * self.N
|
|
|
|
if self.N > 0:
|
|
x_initial, P_initial, Q = self.pad_augmented(self.x_initial, self.P_initial, self.Q) # lgtm[py/mismatched-multiple-assignment] pylint: disable=unbalanced-tuple-unpacking
|
|
self.computer = LstSqComputer(generated_dir, N)
|
|
|
|
self.quaternion_idxs = [3, ] + [(self.dim_main + i * self.dim_augment + 3)for i in range(self.N)]
|
|
|
|
# init filter
|
|
self.filter = EKF_sym(generated_dir, name, Q, x_initial, P_initial, self.dim_main, self.dim_main_err,
|
|
N, self.dim_augment, self.dim_augment_err, self.maha_test_kinds, self.quaternion_idxs)
|
|
|
|
@property
|
|
def x(self):
|
|
return self.filter.state()
|
|
|
|
@property
|
|
def t(self):
|
|
return self.filter.get_filter_time()
|
|
|
|
@property
|
|
def P(self):
|
|
return self.filter.covs()
|
|
|
|
def predict(self, t):
|
|
return self.filter.predict(t)
|
|
|
|
def rts_smooth(self, estimates):
|
|
return self.filter.rts_smooth(estimates, norm_quats=True)
|
|
|
|
def pad_augmented(self, x, P, Q=None):
|
|
if x.shape[0] == self.dim_main and self.N > 0:
|
|
x = np.pad(x, (0, self.N * self.dim_augment), mode='constant')
|
|
x[self.dim_main + 3::7] = 1
|
|
if P.shape[0] == self.dim_main_err and self.N > 0:
|
|
P = np.pad(P, [(0, self.N * self.dim_augment_err), (0, self.N * self.dim_augment_err)], mode='constant')
|
|
P[self.dim_main_err:, self.dim_main_err:] = 10e20 * np.eye(self.dim_augment_err * self.N)
|
|
if Q is None:
|
|
return x, P
|
|
else:
|
|
Q = np.pad(Q, [(0, self.N * self.dim_augment_err), (0, self.N * self.dim_augment_err)], mode='constant')
|
|
return x, P, Q
|
|
|
|
def init_state(self, state, covs_diag=None, covs=None, filter_time=None):
|
|
if covs_diag is not None:
|
|
P = np.diag(covs_diag)
|
|
elif covs is not None:
|
|
P = covs
|
|
else:
|
|
P = self.filter.covs()
|
|
state, P = self.pad_augmented(state, P)
|
|
self.filter.init_state(state, P, filter_time)
|
|
|
|
def predict_and_observe(self, t, kind, data):
|
|
if len(data) > 0:
|
|
data = np.atleast_2d(data)
|
|
if kind == ObservationKind.CAMERA_ODO_TRANSLATION:
|
|
r = self.predict_and_update_odo_trans(data, t, kind)
|
|
elif kind == ObservationKind.CAMERA_ODO_ROTATION:
|
|
r = self.predict_and_update_odo_rot(data, t, kind)
|
|
elif kind == ObservationKind.PSEUDORANGE_GPS or kind == ObservationKind.PSEUDORANGE_GLONASS:
|
|
r = self.predict_and_update_pseudorange(data, t, kind)
|
|
elif kind == ObservationKind.PSEUDORANGE_RATE_GPS or kind == ObservationKind.PSEUDORANGE_RATE_GLONASS:
|
|
r = self.predict_and_update_pseudorange_rate(data, t, kind)
|
|
elif kind == ObservationKind.ORB_FEATURES or kind == ObservationKind.ORB_FEATURES_WIDE:
|
|
r = self.predict_and_update_orb_features(data, t, kind)
|
|
elif kind == ObservationKind.MSCKF_TEST:
|
|
r = self.predict_and_update_msckf_test(data, t, kind)
|
|
else:
|
|
r = self.filter.predict_and_update_batch(t, kind, data, self.get_R(kind, len(data)))
|
|
# Normalize quats
|
|
quat_norm = np.linalg.norm(self.filter.state()[3:7])
|
|
# Should not continue if the quats behave this weirdly
|
|
if not 0.1 < quat_norm < 10:
|
|
raise RuntimeError("Sir! The filter's gone all wobbly!")
|
|
return r
|
|
|
|
def get_R(self, kind, n):
|
|
obs_noise = self.obs_noise[kind]
|
|
dim = obs_noise.shape[0]
|
|
R = np.zeros((n, dim, dim))
|
|
for i in range(n):
|
|
R[i, :, :] = obs_noise
|
|
return R
|
|
|
|
def predict_and_update_pseudorange(self, meas, t, kind):
|
|
R = np.zeros((len(meas), 1, 1))
|
|
sat_pos_freq = np.zeros((len(meas), 4))
|
|
z = np.zeros((len(meas), 1))
|
|
for i, m in enumerate(meas):
|
|
z_i, R_i, sat_pos_freq_i = parse_pr(m)
|
|
sat_pos_freq[i, :] = sat_pos_freq_i
|
|
z[i, :] = z_i
|
|
R[i, :, :] = R_i
|
|
return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_freq)
|
|
|
|
def predict_and_update_pseudorange_rate(self, meas, t, kind):
|
|
R = np.zeros((len(meas), 1, 1))
|
|
z = np.zeros((len(meas), 1))
|
|
sat_pos_vel = np.zeros((len(meas), 6))
|
|
for i, m in enumerate(meas):
|
|
z_i, R_i, sat_pos_vel_i = parse_prr(m)
|
|
sat_pos_vel[i] = sat_pos_vel_i
|
|
R[i, :, :] = R_i
|
|
z[i, :] = z_i
|
|
return self.filter.predict_and_update_batch(t, kind, z, R, sat_pos_vel)
|
|
|
|
def predict_and_update_odo_trans(self, trans, t, kind):
|
|
z = trans[:, :3]
|
|
R = np.zeros((len(trans), 3, 3))
|
|
for i, _ in enumerate(z):
|
|
R[i, :, :] = np.diag(trans[i, 3:]**2)
|
|
return self.filter.predict_and_update_batch(t, kind, z, R)
|
|
|
|
def predict_and_update_odo_rot(self, rot, t, kind):
|
|
z = rot[:, :3]
|
|
R = np.zeros((len(rot), 3, 3))
|
|
for i, _ in enumerate(z):
|
|
R[i, :, :] = np.diag(rot[i, 3:]**2)
|
|
return self.filter.predict_and_update_batch(t, kind, z, R)
|
|
|
|
def predict_and_update_orb_features(self, tracks, t, kind):
|
|
k = 2 * (self.N + 1)
|
|
R = np.zeros((len(tracks), k, k))
|
|
z = np.zeros((len(tracks), k))
|
|
ecef_pos = np.zeros((len(tracks), 3))
|
|
ecef_pos[:] = np.nan
|
|
poses = self.x[self.dim_main:].reshape((-1, 7))
|
|
times = tracks.reshape((len(tracks), self.N + 1, 4))[:, :, 0]
|
|
if kind==ObservationKind.ORB_FEATURES:
|
|
pt_std = 0.005
|
|
else:
|
|
pt_std = 0.02
|
|
if times.any():
|
|
assert np.allclose(times[0, :-1], self.filter.get_augment_times(), atol=1e-7, rtol=0.0)
|
|
for i, track in enumerate(tracks):
|
|
img_positions = track.reshape((self.N + 1, 4))[:, 2:]
|
|
|
|
# TODO not perfect as last pose not used
|
|
# img_positions = unroll_shutter(img_positions, poses, self.filter.state()[7:10], self.filter.state()[10:13], ecef_pos[i])
|
|
|
|
ecef_pos[i] = self.computer.compute_pos(poses, img_positions[:-1])
|
|
z[i] = img_positions.flatten()
|
|
R[i, :, :] = np.diag([pt_std**2] * (k))
|
|
|
|
good_idxs = np.all(np.isfinite(ecef_pos), axis=1)
|
|
|
|
# This code relies on wide and narrow orb features being captured at the same time,
|
|
# and wide features to be processed first.
|
|
ret = self.filter.predict_and_update_batch(t, kind, z[good_idxs], R[good_idxs], ecef_pos[good_idxs],
|
|
augment=kind==ObservationKind.ORB_FEATURES)
|
|
if ret is None:
|
|
return
|
|
|
|
# have to do some weird stuff here to keep
|
|
# to have the observations input from mesh3d
|
|
# consistent with the outputs of the filter
|
|
# Probably should be replaced, not sure how.
|
|
y_full = np.zeros((z.shape[0], z.shape[1] - 3))
|
|
if sum(good_idxs) > 0:
|
|
y_full[good_idxs] = np.array(ret[6])
|
|
ret = ret[:6] + (y_full, z, ecef_pos)
|
|
return ret
|
|
|
|
def predict_and_update_msckf_test(self, test_data, t, kind):
|
|
assert self.N > 0
|
|
z = test_data
|
|
R = np.zeros((len(test_data), len(z[0]), len(z[0])))
|
|
ecef_pos = [self.x[:3]]
|
|
for i, _ in enumerate(z):
|
|
R[i, :, :] = np.diag([0.1**2] * len(z[0]))
|
|
ret = self.filter.predict_and_update_batch(t, kind, z, R, ecef_pos)
|
|
self.filter.augment()
|
|
return ret
|
|
|
|
def maha_test_pseudorange(self, x, P, meas, kind, maha_thresh=.3):
|
|
bools = []
|
|
for m in meas:
|
|
z, R, sat_pos_freq = parse_pr(m)
|
|
bools.append(self.filter.maha_test(x, P, kind, z, R, extra_args=sat_pos_freq, maha_thresh=maha_thresh))
|
|
return np.array(bools)
|
|
|
|
def maha_test_pseudorange_rate(self, x, P, meas, kind, maha_thresh=.999):
|
|
bools = []
|
|
for m in meas:
|
|
z, R, sat_pos_vel = parse_prr(m)
|
|
bools.append(self.filter.maha_test(x, P, kind, z, R, extra_args=sat_pos_vel, maha_thresh=maha_thresh))
|
|
return np.array(bools)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
N = int(sys.argv[1].split("_")[-1])
|
|
generated_dir = sys.argv[2]
|
|
LocKalman.generate_code(generated_dir, N=N)
|
|
|