openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

330 lines
11 KiB

// include first, needed by safety policies
#include "safety_declarations.h"
// Include the actual safety policies.
#include "safety/safety_defaults.h"
#include "safety/safety_honda.h"
#include "safety/safety_toyota.h"
#include "safety/safety_toyota_ipas.h"
#include "safety/safety_tesla.h"
#include "safety/safety_gm_ascm.h"
#include "safety/safety_gm.h"
#include "safety/safety_ford.h"
#include "safety/safety_cadillac.h"
#include "safety/safety_hyundai.h"
#include "safety/safety_chrysler.h"
#include "safety/safety_subaru.h"
#include "safety/safety_mazda.h"
#include "safety/safety_volkswagen.h"
#include "safety/safety_elm327.h"
// from cereal.car.CarParams.SafetyModel
#define SAFETY_SILENT 0U
#define SAFETY_HONDA_NIDEC 1U
#define SAFETY_TOYOTA 2U
#define SAFETY_ELM327 3U
#define SAFETY_GM 4U
#define SAFETY_HONDA_BOSCH_GIRAFFE 5U
#define SAFETY_FORD 6U
#define SAFETY_CADILLAC 7U
#define SAFETY_HYUNDAI 8U
#define SAFETY_CHRYSLER 9U
#define SAFETY_TESLA 10U
#define SAFETY_SUBARU 11U
#define SAFETY_MAZDA 13U
#define SAFETY_VOLKSWAGEN 15U
#define SAFETY_TOYOTA_IPAS 16U
#define SAFETY_ALLOUTPUT 17U
#define SAFETY_GM_ASCM 18U
#define SAFETY_NOOUTPUT 19U
#define SAFETY_HONDA_BOSCH_HARNESS 20U
uint16_t current_safety_mode = SAFETY_SILENT;
const safety_hooks *current_hooks = &nooutput_hooks;
int safety_rx_hook(CAN_FIFOMailBox_TypeDef *to_push){
return current_hooks->rx(to_push);
}
int safety_tx_hook(CAN_FIFOMailBox_TypeDef *to_send) {
return current_hooks->tx(to_send);
}
int safety_tx_lin_hook(int lin_num, uint8_t *data, int len){
return current_hooks->tx_lin(lin_num, data, len);
}
int safety_fwd_hook(int bus_num, CAN_FIFOMailBox_TypeDef *to_fwd) {
return current_hooks->fwd(bus_num, to_fwd);
}
bool msg_allowed(int addr, int bus, const AddrBus addr_list[], int len) {
bool allowed = false;
for (int i = 0; i < len; i++) {
if ((addr == addr_list[i].addr) && (bus == addr_list[i].bus)) {
allowed = true;
break;
}
}
return allowed;
}
// compute the time elapsed (in microseconds) from 2 counter samples
// case where ts < ts_last is ok: overflow is properly re-casted into uint32_t
uint32_t get_ts_elapsed(uint32_t ts, uint32_t ts_last) {
return ts - ts_last;
}
int get_addr_check_index(CAN_FIFOMailBox_TypeDef *to_push, AddrCheckStruct addr_list[], const int len) {
int bus = GET_BUS(to_push);
int addr = GET_ADDR(to_push);
int index = -1;
for (int i = 0; i < len; i++) {
for (uint8_t j = 0U; addr_list[i].addr[j] != 0; j++) {
if ((addr == addr_list[i].addr[j]) && (bus == addr_list[i].bus)) {
index = i;
goto Return;
}
}
}
Return:
return index;
}
// 1Hz safety function called by main. Now just a check for lagging safety messages
void safety_tick(const safety_hooks *hooks) {
uint32_t ts = TIM2->CNT;
if (hooks->addr_check != NULL) {
for (int i=0; i < hooks->addr_check_len; i++) {
uint32_t elapsed_time = get_ts_elapsed(ts, hooks->addr_check[i].last_timestamp);
// lag threshold is max of: 1s and MAX_MISSED_MSGS * expected timestep.
// Quite conservative to not risk false triggers.
// 2s of lag is worse case, since the function is called at 1Hz
bool lagging = elapsed_time > MAX(hooks->addr_check[i].expected_timestep * MAX_MISSED_MSGS, 1e6);
hooks->addr_check[i].lagging = lagging;
if (lagging) {
controls_allowed = 0;
}
}
}
}
void update_counter(AddrCheckStruct addr_list[], int index, uint8_t counter) {
if (index != -1) {
uint8_t expected_counter = (addr_list[index].last_counter + 1U) % (addr_list[index].max_counter + 1U);
addr_list[index].wrong_counters += (expected_counter == counter) ? -1 : 1;
addr_list[index].wrong_counters = MAX(MIN(addr_list[index].wrong_counters, MAX_WRONG_COUNTERS), 0);
addr_list[index].last_counter = counter;
}
}
bool is_msg_valid(AddrCheckStruct addr_list[], int index) {
bool valid = true;
if (index != -1) {
if ((!addr_list[index].valid_checksum) || (addr_list[index].wrong_counters >= MAX_WRONG_COUNTERS)) {
valid = false;
controls_allowed = 0;
}
}
return valid;
}
void update_addr_timestamp(AddrCheckStruct addr_list[], int index) {
if (index != -1) {
uint32_t ts = TIM2->CNT;
addr_list[index].last_timestamp = ts;
}
}
bool addr_safety_check(CAN_FIFOMailBox_TypeDef *to_push,
AddrCheckStruct *rx_checks,
const int rx_checks_len,
uint8_t (*get_checksum)(CAN_FIFOMailBox_TypeDef *to_push),
uint8_t (*compute_checksum)(CAN_FIFOMailBox_TypeDef *to_push),
uint8_t (*get_counter)(CAN_FIFOMailBox_TypeDef *to_push)) {
int index = get_addr_check_index(to_push, rx_checks, rx_checks_len);
update_addr_timestamp(rx_checks, index);
if (index != -1) {
// checksum check
if ((get_checksum != NULL) && (compute_checksum != NULL)) {
if (rx_checks[index].check_checksum) {
uint8_t checksum = get_checksum(to_push);
uint8_t checksum_comp = compute_checksum(to_push);
rx_checks[index].valid_checksum = checksum_comp == checksum;
}
}
// counter check
if (get_counter != NULL) {
if (rx_checks[index].max_counter > 0U) {
uint8_t counter = get_counter(to_push);
update_counter(rx_checks, index, counter);
}
}
}
return is_msg_valid(rx_checks, index);
}
typedef struct {
uint16_t id;
const safety_hooks *hooks;
} safety_hook_config;
const safety_hook_config safety_hook_registry[] = {
{SAFETY_SILENT, &nooutput_hooks},
{SAFETY_HONDA_NIDEC, &honda_nidec_hooks},
{SAFETY_TOYOTA, &toyota_hooks},
{SAFETY_ELM327, &elm327_hooks},
{SAFETY_GM, &gm_hooks},
{SAFETY_HONDA_BOSCH_GIRAFFE, &honda_bosch_giraffe_hooks},
{SAFETY_HONDA_BOSCH_HARNESS, &honda_bosch_harness_hooks},
{SAFETY_HYUNDAI, &hyundai_hooks},
{SAFETY_CHRYSLER, &chrysler_hooks},
{SAFETY_SUBARU, &subaru_hooks},
{SAFETY_MAZDA, &mazda_hooks},
{SAFETY_VOLKSWAGEN, &volkswagen_hooks},
{SAFETY_NOOUTPUT, &nooutput_hooks},
#ifdef ALLOW_DEBUG
{SAFETY_CADILLAC, &cadillac_hooks},
{SAFETY_TOYOTA_IPAS, &toyota_ipas_hooks},
{SAFETY_TESLA, &tesla_hooks},
{SAFETY_ALLOUTPUT, &alloutput_hooks},
{SAFETY_GM_ASCM, &gm_ascm_hooks},
{SAFETY_FORD, &ford_hooks},
#endif
};
int set_safety_hooks(uint16_t mode, int16_t param) {
safety_mode_cnt = 0U; // reset safety mode timer
int set_status = -1; // not set
int hook_config_count = sizeof(safety_hook_registry) / sizeof(safety_hook_config);
for (int i = 0; i < hook_config_count; i++) {
if (safety_hook_registry[i].id == mode) {
current_hooks = safety_hook_registry[i].hooks;
current_safety_mode = safety_hook_registry[i].id;
set_status = 0; // set
break;
}
}
if ((set_status == 0) && (current_hooks->init != NULL)) {
current_hooks->init(param);
}
return set_status;
}
// convert a trimmed integer to signed 32 bit int
int to_signed(int d, int bits) {
int d_signed = d;
if (d >= (1 << MAX((bits - 1), 0))) {
d_signed = d - (1 << MAX(bits, 0));
}
return d_signed;
}
// given a new sample, update the smaple_t struct
void update_sample(struct sample_t *sample, int sample_new) {
int sample_size = sizeof(sample->values) / sizeof(sample->values[0]);
for (int i = sample_size - 1; i > 0; i--) {
sample->values[i] = sample->values[i-1];
}
sample->values[0] = sample_new;
// get the minimum and maximum measured samples
sample->min = sample->values[0];
sample->max = sample->values[0];
for (int i = 1; i < sample_size; i++) {
if (sample->values[i] < sample->min) {
sample->min = sample->values[i];
}
if (sample->values[i] > sample->max) {
sample->max = sample->values[i];
}
}
}
bool max_limit_check(int val, const int MAX_VAL, const int MIN_VAL) {
return (val > MAX_VAL) || (val < MIN_VAL);
}
// check that commanded value isn't too far from measured
bool dist_to_meas_check(int val, int val_last, struct sample_t *val_meas,
const int MAX_RATE_UP, const int MAX_RATE_DOWN, const int MAX_ERROR) {
// *** val rate limit check ***
int highest_allowed_rl = MAX(val_last, 0) + MAX_RATE_UP;
int lowest_allowed_rl = MIN(val_last, 0) - MAX_RATE_UP;
// if we've exceeded the meas val, we must start moving toward 0
int highest_allowed = MIN(highest_allowed_rl, MAX(val_last - MAX_RATE_DOWN, MAX(val_meas->max, 0) + MAX_ERROR));
int lowest_allowed = MAX(lowest_allowed_rl, MIN(val_last + MAX_RATE_DOWN, MIN(val_meas->min, 0) - MAX_ERROR));
// check for violation
return (val < lowest_allowed) || (val > highest_allowed);
}
// check that commanded value isn't fighting against driver
bool driver_limit_check(int val, int val_last, struct sample_t *val_driver,
const int MAX_VAL, const int MAX_RATE_UP, const int MAX_RATE_DOWN,
const int MAX_ALLOWANCE, const int DRIVER_FACTOR) {
int highest_allowed_rl = MAX(val_last, 0) + MAX_RATE_UP;
int lowest_allowed_rl = MIN(val_last, 0) - MAX_RATE_UP;
int driver_max_limit = MAX_VAL + (MAX_ALLOWANCE + val_driver->max) * DRIVER_FACTOR;
int driver_min_limit = -MAX_VAL + (-MAX_ALLOWANCE + val_driver->min) * DRIVER_FACTOR;
// if we've exceeded the applied torque, we must start moving toward 0
int highest_allowed = MIN(highest_allowed_rl, MAX(val_last - MAX_RATE_DOWN,
MAX(driver_max_limit, 0)));
int lowest_allowed = MAX(lowest_allowed_rl, MIN(val_last + MAX_RATE_DOWN,
MIN(driver_min_limit, 0)));
// check for violation
return (val < lowest_allowed) || (val > highest_allowed);
}
// real time check, mainly used for steer torque rate limiter
bool rt_rate_limit_check(int val, int val_last, const int MAX_RT_DELTA) {
// *** torque real time rate limit check ***
int highest_val = MAX(val_last, 0) + MAX_RT_DELTA;
int lowest_val = MIN(val_last, 0) - MAX_RT_DELTA;
// check for violation
return (val < lowest_val) || (val > highest_val);
}
// interp function that holds extreme values
float interpolate(struct lookup_t xy, float x) {
int size = sizeof(xy.x) / sizeof(xy.x[0]);
float ret = xy.y[size - 1]; // default output is last point
// x is lower than the first point in the x array. Return the first point
if (x <= xy.x[0]) {
ret = xy.y[0];
} else {
// find the index such that (xy.x[i] <= x < xy.x[i+1]) and linearly interp
for (int i=0; i < (size - 1); i++) {
if (x < xy.x[i+1]) {
float x0 = xy.x[i];
float y0 = xy.y[i];
float dx = xy.x[i+1] - x0;
float dy = xy.y[i+1] - y0;
// dx should not be zero as xy.x is supposed to be monotonic
if (dx <= 0.) {
dx = 0.0001;
}
ret = (dy * (x - x0) / dx) + y0;
break;
}
}
}
return ret;
}