openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

232 lines
9.8 KiB

import numpy as np
from common.realtime import DT_CTRL, DT_DMON
from selfdrive.controls.lib.drive_helpers import create_event, EventTypes as ET
from common.filter_simple import FirstOrderFilter
from common.stat_live import RunningStatFilter
_AWARENESS_TIME = 100. # 1.6 minutes limit without user touching steering wheels make the car enter a terminal status
_AWARENESS_PRE_TIME_TILL_TERMINAL = 25. # a first alert is issued 25s before expiration
_AWARENESS_PROMPT_TIME_TILL_TERMINAL = 15. # a second alert is issued 15s before start decelerating the car
_DISTRACTED_TIME = 11.
_DISTRACTED_PRE_TIME_TILL_TERMINAL = 8.
_DISTRACTED_PROMPT_TIME_TILL_TERMINAL = 6.
_FACE_THRESHOLD = 0.4
_EYE_THRESHOLD = 0.6
_BLINK_THRESHOLD = 0.5 # 0.225
_BLINK_THRESHOLD_SLACK = 0.65
_BLINK_THRESHOLD_STRICT = 0.5
_PITCH_WEIGHT = 1.35 # 1.5 # pitch matters a lot more
_METRIC_THRESHOLD = 0.4
_METRIC_THRESHOLD_SLACK = 0.55
_METRIC_THRESHOLD_STRICT = 0.4
_PITCH_POS_ALLOWANCE = 0.12 # rad, to not be too sensitive on positive pitch
_PITCH_NATURAL_OFFSET = 0.02 # people don't seem to look straight when they drive relaxed, rather a bit up
_YAW_NATURAL_OFFSET = 0.08 # people don't seem to look straight when they drive relaxed, rather a bit to the right (center of car)
_DISTRACTED_FILTER_TS = 0.25 # 0.6Hz
_POSE_CALIB_MIN_SPEED = 13 # 30 mph
_POSE_OFFSET_MIN_COUNT = 600 # valid data counts before calibration completes, 1 seg is 600 counts
_POSE_OFFSET_MAX_COUNT = 3600 # stop deweighting new data after 6 min, aka "short term memory"
_RECOVERY_FACTOR_MAX = 5. # relative to minus step change
_RECOVERY_FACTOR_MIN = 1.25 # relative to minus step change
MAX_TERMINAL_ALERTS = 3 # not allowed to engage after 3 terminal alerts
MAX_TERMINAL_DURATION = 3000 # 30s
# model output refers to center of cropped image, so need to apply the x displacement offset
RESIZED_FOCAL = 320.0
H, W, FULL_W = 320, 160, 426
class DistractedType():
NOT_DISTRACTED = 0
BAD_POSE = 1
BAD_BLINK = 2
def face_orientation_from_net(angles_desc, pos_desc, rpy_calib):
# the output of these angles are in device frame
# so from driver's perspective, pitch is up and yaw is right
pitch_net = angles_desc[0]
yaw_net = angles_desc[1]
roll_net = angles_desc[2]
face_pixel_position = ((pos_desc[0] + .5)*W - W + FULL_W, (pos_desc[1]+.5)*H)
yaw_focal_angle = np.arctan2(face_pixel_position[0] - FULL_W//2, RESIZED_FOCAL)
pitch_focal_angle = np.arctan2(face_pixel_position[1] - H//2, RESIZED_FOCAL)
roll = roll_net
pitch = pitch_net + pitch_focal_angle
yaw = -yaw_net + yaw_focal_angle
# no calib for roll
pitch -= rpy_calib[1]
yaw -= rpy_calib[2]
return np.array([roll, pitch, yaw])
class DriverPose():
def __init__(self):
self.yaw = 0.
self.pitch = 0.
self.roll = 0.
self.pitch_offseter = RunningStatFilter(max_trackable=_POSE_OFFSET_MAX_COUNT)
self.yaw_offseter = RunningStatFilter(max_trackable=_POSE_OFFSET_MAX_COUNT)
self.cfactor = 1.
class DriverBlink():
def __init__(self):
self.left_blink = 0.
self.right_blink = 0.
self.cfactor = 1.
class DriverStatus():
def __init__(self):
self.pose = DriverPose()
self.pose_calibrated = self.pose.pitch_offseter.filtered_stat.n > _POSE_OFFSET_MIN_COUNT and \
self.pose.yaw_offseter.filtered_stat.n > _POSE_OFFSET_MIN_COUNT
self.blink = DriverBlink()
self.awareness = 1.
self.awareness_active = 1.
self.awareness_passive = 1.
self.driver_distracted = False
self.driver_distraction_filter = FirstOrderFilter(0., _DISTRACTED_FILTER_TS, DT_DMON)
self.face_detected = False
self.terminal_alert_cnt = 0
self.terminal_time = 0
self.step_change = 0.
self.active_monitoring_mode = True
self.threshold_prompt = _DISTRACTED_PROMPT_TIME_TILL_TERMINAL / _DISTRACTED_TIME
self.is_rhd_region = False
self.is_rhd_region_checked = False
self._set_timers(active_monitoring=True)
def _set_timers(self, active_monitoring):
if self.active_monitoring_mode and self.awareness <= self.threshold_prompt:
if active_monitoring:
self.step_change = DT_CTRL / _DISTRACTED_TIME
else:
self.step_change = 0.
return # no exploit after orange alert
elif self.awareness <= 0.:
return
if active_monitoring:
# when falling back from passive mode to active mode, reset awareness to avoid false alert
if not self.active_monitoring_mode:
self.awareness_passive = self.awareness
self.awareness = self.awareness_active
self.threshold_pre = _DISTRACTED_PRE_TIME_TILL_TERMINAL / _DISTRACTED_TIME
self.threshold_prompt = _DISTRACTED_PROMPT_TIME_TILL_TERMINAL / _DISTRACTED_TIME
self.step_change = DT_CTRL / _DISTRACTED_TIME
self.active_monitoring_mode = True
else:
if self.active_monitoring_mode:
self.awareness_active = self.awareness
self.awareness = self.awareness_passive
self.threshold_pre = _AWARENESS_PRE_TIME_TILL_TERMINAL / _AWARENESS_TIME
self.threshold_prompt = _AWARENESS_PROMPT_TIME_TILL_TERMINAL / _AWARENESS_TIME
self.step_change = DT_CTRL / _AWARENESS_TIME
self.active_monitoring_mode = False
def _is_driver_distracted(self, pose, blink):
if not self.pose_calibrated:
pitch_error = pose.pitch - _PITCH_NATURAL_OFFSET
yaw_error = pose.yaw - _YAW_NATURAL_OFFSET
else:
pitch_error = pose.pitch - self.pose.pitch_offseter.filtered_stat.mean()
yaw_error = pose.yaw - self.pose.yaw_offseter.filtered_stat.mean()
# positive pitch allowance
if pitch_error > 0.:
pitch_error = max(pitch_error - _PITCH_POS_ALLOWANCE, 0.)
pitch_error *= _PITCH_WEIGHT
pose_metric = np.sqrt(yaw_error**2 + pitch_error**2)
if pose_metric > _METRIC_THRESHOLD*pose.cfactor:
return DistractedType.BAD_POSE
elif (blink.left_blink + blink.right_blink)*0.5 > _BLINK_THRESHOLD*blink.cfactor:
return DistractedType.BAD_BLINK
else:
return DistractedType.NOT_DISTRACTED
def set_policy(self, model_data):
ep = min(model_data.meta.engagedProb, 0.8) / 0.8
self.pose.cfactor = np.interp(ep, [0, 0.5, 1], [_METRIC_THRESHOLD_STRICT, _METRIC_THRESHOLD, _METRIC_THRESHOLD_SLACK])/_METRIC_THRESHOLD
self.blink.cfactor = np.interp(ep, [0, 0.5, 1], [_BLINK_THRESHOLD_STRICT, _BLINK_THRESHOLD, _BLINK_THRESHOLD_SLACK])/_BLINK_THRESHOLD
def get_pose(self, driver_monitoring, cal_rpy, car_speed, op_engaged):
# 10 Hz
if len(driver_monitoring.faceOrientation) == 0 or len(driver_monitoring.facePosition) == 0:
return
self.pose.roll, self.pose.pitch, self.pose.yaw = face_orientation_from_net(driver_monitoring.faceOrientation, driver_monitoring.facePosition, cal_rpy)
self.blink.left_blink = driver_monitoring.leftBlinkProb * (driver_monitoring.leftEyeProb>_EYE_THRESHOLD)
self.blink.right_blink = driver_monitoring.rightBlinkProb * (driver_monitoring.rightEyeProb>_EYE_THRESHOLD)
self.face_detected = driver_monitoring.faceProb > _FACE_THRESHOLD and \
abs(driver_monitoring.facePosition[0]) <= 0.4 and abs(driver_monitoring.facePosition[1]) <= 0.45 and \
not self.is_rhd_region
self.driver_distracted = self._is_driver_distracted(self.pose, self.blink)>0
# first order filters
self.driver_distraction_filter.update(self.driver_distracted)
# update offseter
# only update when driver is actively driving the car above a certain speed
if self.face_detected and car_speed>_POSE_CALIB_MIN_SPEED and (not op_engaged or not self.driver_distracted):
self.pose.pitch_offseter.push_and_update(self.pose.pitch)
self.pose.yaw_offseter.push_and_update(self.pose.yaw)
self.pose_calibrated = self.pose.pitch_offseter.filtered_stat.n > _POSE_OFFSET_MIN_COUNT and \
self.pose.yaw_offseter.filtered_stat.n > _POSE_OFFSET_MIN_COUNT
self._set_timers(self.face_detected)
def update(self, events, driver_engaged, ctrl_active, standstill):
if (driver_engaged and self.awareness > 0) or not ctrl_active:
# reset only when on disengagement if red reached
self.awareness = 1.
self.awareness_active = 1.
self.awareness_passive = 1.
return events
driver_attentive = self.driver_distraction_filter.x < 0.37
awareness_prev = self.awareness
if (driver_attentive and self.face_detected and self.awareness > 0):
# only restore awareness when paying attention and alert is not red
self.awareness = min(self.awareness + ((_RECOVERY_FACTOR_MAX-_RECOVERY_FACTOR_MIN)*(1.-self.awareness)+_RECOVERY_FACTOR_MIN)*self.step_change, 1.)
if self.awareness == 1.:
self.awareness_passive = min(self.awareness_passive + self.step_change, 1.)
# don't display alert banner when awareness is recovering and has cleared orange
if self.awareness > self.threshold_prompt:
return events
# should always be counting if distracted unless at standstill and reaching orange
if (not self.face_detected or (self.driver_distraction_filter.x > 0.63 and self.driver_distracted and self.face_detected)) and \
not (standstill and self.awareness - self.step_change <= self.threshold_prompt):
self.awareness = max(self.awareness - self.step_change, -0.1)
alert = None
if self.awareness <= 0.:
# terminal red alert: disengagement required
alert = 'driverDistracted' if self.active_monitoring_mode else 'driverUnresponsive'
self.terminal_time += 1
if awareness_prev > 0.:
self.terminal_alert_cnt += 1
elif self.awareness <= self.threshold_prompt:
# prompt orange alert
alert = 'promptDriverDistracted' if self.active_monitoring_mode else 'promptDriverUnresponsive'
elif self.awareness <= self.threshold_pre:
# pre green alert
alert = 'preDriverDistracted' if self.active_monitoring_mode else 'preDriverUnresponsive'
if alert is not None:
events.append(create_event(alert, [ET.WARNING]))
return events