openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

246 lines
9.0 KiB

#include "opendbc/can/common.h"
unsigned int honda_checksum(uint32_t address, const Signal &sig, const std::vector<uint8_t> &d) {
int s = 0;
bool extended = address > 0x7FF;
while (address) { s += (address & 0xF); address >>= 4; }
for (int i = 0; i < d.size(); i++) {
uint8_t x = d[i];
if (i == d.size()-1) x >>= 4; // remove checksum
s += (x & 0xF) + (x >> 4);
}
s = 8-s;
if (extended) s += 3; // extended can
return s & 0xF;
}
unsigned int toyota_checksum(uint32_t address, const Signal &sig, const std::vector<uint8_t> &d) {
unsigned int s = d.size();
while (address) { s += address & 0xFF; address >>= 8; }
for (int i = 0; i < d.size() - 1; i++) { s += d[i]; }
return s & 0xFF;
}
unsigned int subaru_checksum(uint32_t address, const Signal &sig, const std::vector<uint8_t> &d) {
unsigned int s = 0;
while (address) { s += address & 0xFF; address >>= 8; }
// skip checksum in first byte
for (int i = 1; i < d.size(); i++) { s += d[i]; }
return s & 0xFF;
}
unsigned int chrysler_checksum(uint32_t address, const Signal &sig, const std::vector<uint8_t> &d) {
// jeep chrysler canbus checksum from http://illmatics.com/Remote%20Car%20Hacking.pdf
uint8_t checksum = 0xFF;
for (int j = 0; j < (d.size() - 1); j++) {
uint8_t shift = 0x80;
uint8_t curr = d[j];
for (int i = 0; i < 8; i++) {
uint8_t bit_sum = curr & shift;
uint8_t temp_chk = checksum & 0x80U;
if (bit_sum != 0U) {
bit_sum = 0x1C;
if (temp_chk != 0U) {
bit_sum = 1;
}
checksum = checksum << 1;
temp_chk = checksum | 1U;
bit_sum ^= temp_chk;
} else {
if (temp_chk != 0U) {
bit_sum = 0x1D;
}
checksum = checksum << 1;
bit_sum ^= checksum;
}
checksum = bit_sum;
shift = shift >> 1;
}
}
return ~checksum & 0xFF;
}
// Static lookup table for fast computation of CRCs
uint8_t crc8_lut_8h2f[256]; // CRC8 poly 0x2F, aka 8H2F/AUTOSAR
uint16_t crc16_lut_xmodem[256]; // CRC16 poly 0x1021, aka XMODEM
void gen_crc_lookup_table_8(uint8_t poly, uint8_t crc_lut[]) {
uint8_t crc;
int i, j;
for (i = 0; i < 256; i++) {
crc = i;
for (j = 0; j < 8; j++) {
if ((crc & 0x80) != 0)
crc = (uint8_t)((crc << 1) ^ poly);
else
crc <<= 1;
}
crc_lut[i] = crc;
}
}
void gen_crc_lookup_table_16(uint16_t poly, uint16_t crc_lut[]) {
uint16_t crc;
int i, j;
for (i = 0; i < 256; i++) {
crc = i << 8;
for (j = 0; j < 8; j++) {
if ((crc & 0x8000) != 0) {
crc = (uint16_t)((crc << 1) ^ poly);
} else {
crc <<= 1;
}
}
crc_lut[i] = crc;
}
}
void init_crc_lookup_tables() {
// At init time, set up static lookup tables for fast CRC computation.
gen_crc_lookup_table_8(0x2F, crc8_lut_8h2f); // CRC-8 8H2F/AUTOSAR for Volkswagen
gen_crc_lookup_table_16(0x1021, crc16_lut_xmodem); // CRC-16 XMODEM for HKG CAN FD
}
unsigned int volkswagen_mqb_checksum(uint32_t address, const Signal &sig, const std::vector<uint8_t> &d) {
// Volkswagen uses standard CRC8 8H2F/AUTOSAR, but they compute it with
// a magic variable padding byte tacked onto the end of the payload.
// https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_CRCLibrary.pdf
uint8_t crc = 0xFF; // Standard init value for CRC8 8H2F/AUTOSAR
// CRC the payload first, skipping over the first byte where the CRC lives.
for (int i = 1; i < d.size(); i++) {
crc ^= d[i];
crc = crc8_lut_8h2f[crc];
}
// Look up and apply the magic final CRC padding byte, which permutes by CAN
// address, and additionally (for SOME addresses) by the message counter.
uint8_t counter = d[1] & 0x0F;
switch (address) {
case 0x86: // LWI_01 Steering Angle
crc ^= (uint8_t[]){0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86, 0x86}[counter];
break;
case 0x9F: // LH_EPS_03 Electric Power Steering
crc ^= (uint8_t[]){0xF5, 0xF5, 0xF5, 0xF5, 0xF5, 0xF5, 0xF5, 0xF5, 0xF5, 0xF5, 0xF5, 0xF5, 0xF5, 0xF5, 0xF5, 0xF5}[counter];
break;
case 0xAD: // Getriebe_11 Automatic Gearbox
crc ^= (uint8_t[]){0x3F, 0x69, 0x39, 0xDC, 0x94, 0xF9, 0x14, 0x64, 0xD8, 0x6A, 0x34, 0xCE, 0xA2, 0x55, 0xB5, 0x2C}[counter];
break;
case 0xFD: // ESP_21 Electronic Stability Program
crc ^= (uint8_t[]){0xB4, 0xEF, 0xF8, 0x49, 0x1E, 0xE5, 0xC2, 0xC0, 0x97, 0x19, 0x3C, 0xC9, 0xF1, 0x98, 0xD6, 0x61}[counter];
break;
case 0x106: // ESP_05 Electronic Stability Program
crc ^= (uint8_t[]){0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07}[counter];
break;
case 0x117: // ACC_10 Automatic Cruise Control
crc ^= (uint8_t[]){0x16, 0x16, 0x16, 0x16, 0x16, 0x16, 0x16, 0x16, 0x16, 0x16, 0x16, 0x16, 0x16, 0x16, 0x16, 0x16}[counter];
break;
case 0x120: // TSK_06 Drivetrain Coordinator
crc ^= (uint8_t[]){0xC4, 0xE2, 0x4F, 0xE4, 0xF8, 0x2F, 0x56, 0x81, 0x9F, 0xE5, 0x83, 0x44, 0x05, 0x3F, 0x97, 0xDF}[counter];
break;
case 0x121: // Motor_20 Driver Throttle Inputs
crc ^= (uint8_t[]){0xE9, 0x65, 0xAE, 0x6B, 0x7B, 0x35, 0xE5, 0x5F, 0x4E, 0xC7, 0x86, 0xA2, 0xBB, 0xDD, 0xEB, 0xB4}[counter];
break;
case 0x122: // ACC_06 Automatic Cruise Control
crc ^= (uint8_t[]){0x37, 0x7D, 0xF3, 0xA9, 0x18, 0x46, 0x6D, 0x4D, 0x3D, 0x71, 0x92, 0x9C, 0xE5, 0x32, 0x10, 0xB9}[counter];
break;
case 0x126: // HCA_01 Heading Control Assist
crc ^= (uint8_t[]){0xDA, 0xDA, 0xDA, 0xDA, 0xDA, 0xDA, 0xDA, 0xDA, 0xDA, 0xDA, 0xDA, 0xDA, 0xDA, 0xDA, 0xDA, 0xDA}[counter];
break;
case 0x12B: // GRA_ACC_01 Steering wheel controls for ACC
crc ^= (uint8_t[]){0x6A, 0x38, 0xB4, 0x27, 0x22, 0xEF, 0xE1, 0xBB, 0xF8, 0x80, 0x84, 0x49, 0xC7, 0x9E, 0x1E, 0x2B}[counter];
break;
case 0x12E: // ACC_07 Automatic Cruise Control
crc ^= (uint8_t[]){0xF8, 0xE5, 0x97, 0xC9, 0xD6, 0x07, 0x47, 0x21, 0x66, 0xDD, 0xCF, 0x6F, 0xA1, 0x94, 0x74, 0x63}[counter];
break;
case 0x187: // EV_Gearshift "Gear" selection data for EVs with no gearbox
crc ^= (uint8_t[]){0x7F, 0xED, 0x17, 0xC2, 0x7C, 0xEB, 0x44, 0x21, 0x01, 0xFA, 0xDB, 0x15, 0x4A, 0x6B, 0x23, 0x05}[counter];
break;
case 0x30C: // ACC_02 Automatic Cruise Control
crc ^= (uint8_t[]){0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F}[counter];
break;
case 0x30F: // SWA_01 Lane Change Assist (SpurWechselAssistent)
crc ^= (uint8_t[]){0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C}[counter];
break;
case 0x324: // ACC_04 Automatic Cruise Control
crc ^= (uint8_t[]){0x27, 0x27, 0x27, 0x27, 0x27, 0x27, 0x27, 0x27, 0x27, 0x27, 0x27, 0x27, 0x27, 0x27, 0x27, 0x27}[counter];
break;
case 0x3C0: // Klemmen_Status_01 ignition and starting status
crc ^= (uint8_t[]){0xC3, 0xC3, 0xC3, 0xC3, 0xC3, 0xC3, 0xC3, 0xC3, 0xC3, 0xC3, 0xC3, 0xC3, 0xC3, 0xC3, 0xC3, 0xC3}[counter];
break;
case 0x65D: // ESP_20 Electronic Stability Program
crc ^= (uint8_t[]){0xAC, 0xB3, 0xAB, 0xEB, 0x7A, 0xE1, 0x3B, 0xF7, 0x73, 0xBA, 0x7C, 0x9E, 0x06, 0x5F, 0x02, 0xD9}[counter];
break;
default: // As-yet undefined CAN message, CRC check expected to fail
printf("Attempt to CRC check undefined Volkswagen message 0x%02X\n", address);
crc ^= (uint8_t[]){0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}[counter];
break;
}
crc = crc8_lut_8h2f[crc];
return crc ^ 0xFF; // Return after standard final XOR for CRC8 8H2F/AUTOSAR
}
unsigned int xor_checksum(uint32_t address, const Signal &sig, const std::vector<uint8_t> &d) {
uint8_t checksum = 0;
int checksum_byte = sig.start_bit / 8;
// Simple XOR over the payload, except for the byte where the checksum lives.
for (int i = 0; i < d.size(); i++) {
if (i != checksum_byte) {
checksum ^= d[i];
}
}
return checksum;
}
unsigned int pedal_checksum(uint32_t address, const Signal &sig, const std::vector<uint8_t> &d) {
uint8_t crc = 0xFF;
uint8_t poly = 0xD5; // standard crc8
// skip checksum byte
for (int i = d.size()-2; i >= 0; i--) {
crc ^= d[i];
for (int j = 0; j < 8; j++) {
if ((crc & 0x80) != 0) {
crc = (uint8_t)((crc << 1) ^ poly);
} else {
crc <<= 1;
}
}
}
return crc;
}
unsigned int hkg_can_fd_checksum(uint32_t address, const Signal &sig, const std::vector<uint8_t> &d) {
uint16_t crc = 0;
for (int i = 2; i < d.size(); i++) {
crc = (crc << 8) ^ crc16_lut_xmodem[(crc >> 8) ^ d[i]];
}
// Add address to crc
crc = (crc << 8) ^ crc16_lut_xmodem[(crc >> 8) ^ ((address >> 0) & 0xFF)];
crc = (crc << 8) ^ crc16_lut_xmodem[(crc >> 8) ^ ((address >> 8) & 0xFF)];
if (d.size() == 8) {
crc ^= 0x5f29;
} else if (d.size() == 16) {
crc ^= 0x041d;
} else if (d.size() == 24) {
crc ^= 0x819d;
} else if (d.size() == 32) {
crc ^= 0x9f5b;
}
return crc;
}