openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

258 lines
7.5 KiB

#pragma once
#include "crc.h"
#define SPI_TIMEOUT_US 10000U
// got max rate from hitting a non-existent endpoint
// in a tight loop, plus some buffer
#define SPI_IRQ_RATE 16000U
#ifdef STM32H7
#define SPI_BUF_SIZE 2048U
// H7 DMA2 located in D2 domain, so we need to use SRAM1/SRAM2
__attribute__((section(".sram12"))) uint8_t spi_buf_rx[SPI_BUF_SIZE];
__attribute__((section(".sram12"))) uint8_t spi_buf_tx[SPI_BUF_SIZE];
#else
#define SPI_BUF_SIZE 1024U
uint8_t spi_buf_rx[SPI_BUF_SIZE];
uint8_t spi_buf_tx[SPI_BUF_SIZE];
#endif
#define SPI_CHECKSUM_START 0xABU
#define SPI_SYNC_BYTE 0x5AU
#define SPI_HACK 0x79U
#define SPI_DACK 0x85U
#define SPI_NACK 0x1FU
// SPI states
enum {
SPI_STATE_HEADER,
SPI_STATE_HEADER_ACK,
SPI_STATE_HEADER_NACK,
SPI_STATE_DATA_RX,
SPI_STATE_DATA_RX_ACK,
SPI_STATE_DATA_TX
};
bool spi_tx_dma_done = false;
uint8_t spi_state = SPI_STATE_HEADER;
uint8_t spi_endpoint;
uint16_t spi_data_len_mosi;
uint16_t spi_data_len_miso;
uint16_t spi_checksum_error_count = 0;
bool spi_can_tx_ready = false;
const char version_text[] = "VERSION";
#define SPI_HEADER_SIZE 7U
// low level SPI prototypes
void llspi_init(void);
void llspi_mosi_dma(uint8_t *addr, int len);
void llspi_miso_dma(uint8_t *addr, int len);
void can_tx_comms_resume_spi(void) {
spi_can_tx_ready = true;
}
uint16_t spi_version_packet(uint8_t *out) {
// this protocol version request is a stable portion of
// the panda's SPI protocol. its contents match that of the
// panda USB descriptors and are sufficent to list/enumerate
// a panda, determine panda type, and bootstub status.
// the response is:
// VERSION + 2 byte data length + data + CRC8
// echo "VERSION"
(void)memcpy(out, version_text, 7);
// write response
uint16_t data_len = 0;
uint16_t data_pos = 7U + 2U;
// write serial
#ifdef UID_BASE
(void)memcpy(&out[data_pos], ((uint8_t *)UID_BASE), 12);
data_len += 12U;
#endif
// HW type
out[data_pos + data_len] = hw_type;
data_len += 1U;
// bootstub
out[data_pos + data_len] = USB_PID & 0xFFU;
data_len += 1U;
// SPI protocol version
out[data_pos + data_len] = 0x2;
data_len += 1U;
// data length
out[7] = data_len & 0xFFU;
out[8] = (data_len >> 8) & 0xFFU;
// CRC8
uint16_t resp_len = data_pos + data_len;
out[resp_len] = crc_checksum(out, resp_len, 0xD5U);
resp_len += 1U;
return resp_len;
}
void spi_init(void) {
// platform init
llspi_init();
// Start the first packet!
spi_state = SPI_STATE_HEADER;
llspi_mosi_dma(spi_buf_rx, SPI_HEADER_SIZE);
}
bool validate_checksum(const uint8_t *data, uint16_t len) {
// TODO: can speed this up by casting the bulk to uint32_t and xor-ing the bytes afterwards
uint8_t checksum = SPI_CHECKSUM_START;
for(uint16_t i = 0U; i < len; i++){
checksum ^= data[i];
}
return checksum == 0U;
}
void spi_rx_done(void) {
uint16_t response_len = 0U;
uint8_t next_rx_state = SPI_STATE_HEADER_NACK;
bool checksum_valid = false;
// parse header
spi_endpoint = spi_buf_rx[1];
spi_data_len_mosi = (spi_buf_rx[3] << 8) | spi_buf_rx[2];
spi_data_len_miso = (spi_buf_rx[5] << 8) | spi_buf_rx[4];
if (memcmp(spi_buf_rx, version_text, 7) == 0) {
response_len = spi_version_packet(spi_buf_tx);
next_rx_state = SPI_STATE_HEADER_NACK;;
} else if (spi_state == SPI_STATE_HEADER) {
checksum_valid = validate_checksum(spi_buf_rx, SPI_HEADER_SIZE);
if ((spi_buf_rx[0] == SPI_SYNC_BYTE) && checksum_valid) {
// response: ACK and start receiving data portion
spi_buf_tx[0] = SPI_HACK;
next_rx_state = SPI_STATE_HEADER_ACK;
response_len = 1U;
} else {
// response: NACK and reset state machine
print("- incorrect header sync or checksum "); hexdump(spi_buf_rx, SPI_HEADER_SIZE);
spi_buf_tx[0] = SPI_NACK;
next_rx_state = SPI_STATE_HEADER_NACK;
response_len = 1U;
}
} else if (spi_state == SPI_STATE_DATA_RX) {
// We got everything! Based on the endpoint specified, call the appropriate handler
bool response_ack = false;
checksum_valid = validate_checksum(&(spi_buf_rx[SPI_HEADER_SIZE]), spi_data_len_mosi + 1U);
if (checksum_valid) {
if (spi_endpoint == 0U) {
if (spi_data_len_mosi >= sizeof(ControlPacket_t)) {
ControlPacket_t ctrl;
(void)memcpy(&ctrl, &spi_buf_rx[SPI_HEADER_SIZE], sizeof(ControlPacket_t));
response_len = comms_control_handler(&ctrl, &spi_buf_tx[3]);
response_ack = true;
} else {
print("SPI: insufficient data for control handler\n");
}
} else if ((spi_endpoint == 1U) || (spi_endpoint == 0x81U)) {
if (spi_data_len_mosi == 0U) {
response_len = comms_can_read(&(spi_buf_tx[3]), spi_data_len_miso);
response_ack = true;
} else {
print("SPI: did not expect data for can_read\n");
}
} else if (spi_endpoint == 2U) {
comms_endpoint2_write(&spi_buf_rx[SPI_HEADER_SIZE], spi_data_len_mosi);
response_ack = true;
} else if (spi_endpoint == 3U) {
if (spi_data_len_mosi > 0U) {
if (spi_can_tx_ready) {
spi_can_tx_ready = false;
comms_can_write(&spi_buf_rx[SPI_HEADER_SIZE], spi_data_len_mosi);
response_ack = true;
} else {
response_ack = false;
print("SPI: CAN NACK\n");
}
} else {
print("SPI: did expect data for can_write\n");
}
} else {
print("SPI: unexpected endpoint"); puth(spi_endpoint); print("\n");
}
} else {
// Checksum was incorrect
response_ack = false;
print("- incorrect data checksum ");
puth4(spi_data_len_mosi);
print("\n");
hexdump(spi_buf_rx, SPI_HEADER_SIZE);
hexdump(&(spi_buf_rx[SPI_HEADER_SIZE]), MIN(spi_data_len_mosi, 64));
print("\n");
}
if (!response_ack) {
spi_buf_tx[0] = SPI_NACK;
next_rx_state = SPI_STATE_HEADER_NACK;
response_len = 1U;
} else {
// Setup response header
spi_buf_tx[0] = SPI_DACK;
spi_buf_tx[1] = response_len & 0xFFU;
spi_buf_tx[2] = (response_len >> 8) & 0xFFU;
// Add checksum
uint8_t checksum = SPI_CHECKSUM_START;
for(uint16_t i = 0U; i < (response_len + 3U); i++) {
checksum ^= spi_buf_tx[i];
}
spi_buf_tx[response_len + 3U] = checksum;
response_len += 4U;
next_rx_state = SPI_STATE_DATA_TX;
}
} else {
print("SPI: RX unexpected state: "); puth(spi_state); print("\n");
}
// send out response
if (response_len == 0U) {
print("SPI: no response\n");
spi_buf_tx[0] = SPI_NACK;
spi_state = SPI_STATE_HEADER_NACK;
response_len = 1U;
}
llspi_miso_dma(spi_buf_tx, response_len);
spi_state = next_rx_state;
if (!checksum_valid && (spi_checksum_error_count < __UINT16_MAX__)) {
spi_checksum_error_count += 1U;
}
}
void spi_tx_done(bool reset) {
if ((spi_state == SPI_STATE_HEADER_NACK) || reset) {
// Reset state
spi_state = SPI_STATE_HEADER;
llspi_mosi_dma(spi_buf_rx, SPI_HEADER_SIZE);
} else if (spi_state == SPI_STATE_HEADER_ACK) {
// ACK was sent, queue up the RX buf for the data + checksum
spi_state = SPI_STATE_DATA_RX;
llspi_mosi_dma(&spi_buf_rx[SPI_HEADER_SIZE], spi_data_len_mosi + 1U);
} else if (spi_state == SPI_STATE_DATA_TX) {
// Reset state
spi_state = SPI_STATE_HEADER;
llspi_mosi_dma(spi_buf_rx, SPI_HEADER_SIZE);
} else {
spi_state = SPI_STATE_HEADER;
llspi_mosi_dma(spi_buf_rx, SPI_HEADER_SIZE);
print("SPI: TX unexpected state: "); puth(spi_state); print("\n");
}
}