You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							235 lines
						
					
					
						
							8.5 KiB
						
					
					
				
			
		
		
	
	
							235 lines
						
					
					
						
							8.5 KiB
						
					
					
				# functions common among cars
 | 
						|
from collections import namedtuple
 | 
						|
from typing import Dict, Optional
 | 
						|
 | 
						|
import capnp
 | 
						|
 | 
						|
from cereal import car
 | 
						|
from openpilot.common.numpy_fast import clip, interp
 | 
						|
 | 
						|
 | 
						|
# kg of standard extra cargo to count for drive, gas, etc...
 | 
						|
STD_CARGO_KG = 136.
 | 
						|
 | 
						|
ButtonType = car.CarState.ButtonEvent.Type
 | 
						|
EventName = car.CarEvent.EventName
 | 
						|
AngleRateLimit = namedtuple('AngleRateLimit', ['speed_bp', 'angle_v'])
 | 
						|
 | 
						|
 | 
						|
def apply_hysteresis(val: float, val_steady: float, hyst_gap: float) -> float:
 | 
						|
  if val > val_steady + hyst_gap:
 | 
						|
    val_steady = val - hyst_gap
 | 
						|
  elif val < val_steady - hyst_gap:
 | 
						|
    val_steady = val + hyst_gap
 | 
						|
  return val_steady
 | 
						|
 | 
						|
 | 
						|
def create_button_event(cur_but: int, prev_but: int, buttons_dict: Dict[int, capnp.lib.capnp._EnumModule],
 | 
						|
                        unpressed: int = 0) -> capnp.lib.capnp._DynamicStructBuilder:
 | 
						|
  if cur_but != unpressed:
 | 
						|
    be = car.CarState.ButtonEvent(pressed=True)
 | 
						|
    but = cur_but
 | 
						|
  else:
 | 
						|
    be = car.CarState.ButtonEvent(pressed=False)
 | 
						|
    but = prev_but
 | 
						|
  be.type = buttons_dict.get(but, ButtonType.unknown)
 | 
						|
  return be
 | 
						|
 | 
						|
 | 
						|
def gen_empty_fingerprint():
 | 
						|
  return {i: {} for i in range(0, 8)}
 | 
						|
 | 
						|
 | 
						|
# these params were derived for the Civic and used to calculate params for other cars
 | 
						|
class VehicleDynamicsParams:
 | 
						|
  MASS = 1326. + STD_CARGO_KG
 | 
						|
  WHEELBASE = 2.70
 | 
						|
  CENTER_TO_FRONT = WHEELBASE * 0.4
 | 
						|
  CENTER_TO_REAR = WHEELBASE - CENTER_TO_FRONT
 | 
						|
  ROTATIONAL_INERTIA = 2500
 | 
						|
  TIRE_STIFFNESS_FRONT = 192150
 | 
						|
  TIRE_STIFFNESS_REAR = 202500
 | 
						|
 | 
						|
 | 
						|
# TODO: get actual value, for now starting with reasonable value for
 | 
						|
# civic and scaling by mass and wheelbase
 | 
						|
def scale_rot_inertia(mass, wheelbase):
 | 
						|
  return VehicleDynamicsParams.ROTATIONAL_INERTIA * mass * wheelbase ** 2 / (VehicleDynamicsParams.MASS * VehicleDynamicsParams.WHEELBASE ** 2)
 | 
						|
 | 
						|
 | 
						|
# TODO: start from empirically derived lateral slip stiffness for the civic and scale by
 | 
						|
# mass and CG position, so all cars will have approximately similar dyn behaviors
 | 
						|
def scale_tire_stiffness(mass, wheelbase, center_to_front, tire_stiffness_factor):
 | 
						|
  center_to_rear = wheelbase - center_to_front
 | 
						|
  tire_stiffness_front = (VehicleDynamicsParams.TIRE_STIFFNESS_FRONT * tire_stiffness_factor) * mass / VehicleDynamicsParams.MASS * \
 | 
						|
                         (center_to_rear / wheelbase) / (VehicleDynamicsParams.CENTER_TO_REAR / VehicleDynamicsParams.WHEELBASE)
 | 
						|
 | 
						|
  tire_stiffness_rear = (VehicleDynamicsParams.TIRE_STIFFNESS_REAR * tire_stiffness_factor) * mass / VehicleDynamicsParams.MASS * \
 | 
						|
                        (center_to_front / wheelbase) / (VehicleDynamicsParams.CENTER_TO_FRONT / VehicleDynamicsParams.WHEELBASE)
 | 
						|
 | 
						|
  return tire_stiffness_front, tire_stiffness_rear
 | 
						|
 | 
						|
 | 
						|
def dbc_dict(pt_dbc, radar_dbc, chassis_dbc=None, body_dbc=None) -> Dict[str, str]:
 | 
						|
  return {'pt': pt_dbc, 'radar': radar_dbc, 'chassis': chassis_dbc, 'body': body_dbc}
 | 
						|
 | 
						|
 | 
						|
def apply_driver_steer_torque_limits(apply_torque, apply_torque_last, driver_torque, LIMITS):
 | 
						|
 | 
						|
  # limits due to driver torque
 | 
						|
  driver_max_torque = LIMITS.STEER_MAX + (LIMITS.STEER_DRIVER_ALLOWANCE + driver_torque * LIMITS.STEER_DRIVER_FACTOR) * LIMITS.STEER_DRIVER_MULTIPLIER
 | 
						|
  driver_min_torque = -LIMITS.STEER_MAX + (-LIMITS.STEER_DRIVER_ALLOWANCE + driver_torque * LIMITS.STEER_DRIVER_FACTOR) * LIMITS.STEER_DRIVER_MULTIPLIER
 | 
						|
  max_steer_allowed = max(min(LIMITS.STEER_MAX, driver_max_torque), 0)
 | 
						|
  min_steer_allowed = min(max(-LIMITS.STEER_MAX, driver_min_torque), 0)
 | 
						|
  apply_torque = clip(apply_torque, min_steer_allowed, max_steer_allowed)
 | 
						|
 | 
						|
  # slow rate if steer torque increases in magnitude
 | 
						|
  if apply_torque_last > 0:
 | 
						|
    apply_torque = clip(apply_torque, max(apply_torque_last - LIMITS.STEER_DELTA_DOWN, -LIMITS.STEER_DELTA_UP),
 | 
						|
                        apply_torque_last + LIMITS.STEER_DELTA_UP)
 | 
						|
  else:
 | 
						|
    apply_torque = clip(apply_torque, apply_torque_last - LIMITS.STEER_DELTA_UP,
 | 
						|
                        min(apply_torque_last + LIMITS.STEER_DELTA_DOWN, LIMITS.STEER_DELTA_UP))
 | 
						|
 | 
						|
  return int(round(float(apply_torque)))
 | 
						|
 | 
						|
 | 
						|
def apply_dist_to_meas_limits(val, val_last, val_meas,
 | 
						|
                              STEER_DELTA_UP, STEER_DELTA_DOWN,
 | 
						|
                              STEER_ERROR_MAX, STEER_MAX):
 | 
						|
  # limits due to comparison of commanded val VS measured val (torque/angle/curvature)
 | 
						|
  max_lim = min(max(val_meas + STEER_ERROR_MAX, STEER_ERROR_MAX), STEER_MAX)
 | 
						|
  min_lim = max(min(val_meas - STEER_ERROR_MAX, -STEER_ERROR_MAX), -STEER_MAX)
 | 
						|
 | 
						|
  val = clip(val, min_lim, max_lim)
 | 
						|
 | 
						|
  # slow rate if val increases in magnitude
 | 
						|
  if val_last > 0:
 | 
						|
    val = clip(val,
 | 
						|
               max(val_last - STEER_DELTA_DOWN, -STEER_DELTA_UP),
 | 
						|
               val_last + STEER_DELTA_UP)
 | 
						|
  else:
 | 
						|
    val = clip(val,
 | 
						|
               val_last - STEER_DELTA_UP,
 | 
						|
               min(val_last + STEER_DELTA_DOWN, STEER_DELTA_UP))
 | 
						|
 | 
						|
  return float(val)
 | 
						|
 | 
						|
 | 
						|
def apply_meas_steer_torque_limits(apply_torque, apply_torque_last, motor_torque, LIMITS):
 | 
						|
  return int(round(apply_dist_to_meas_limits(apply_torque, apply_torque_last, motor_torque,
 | 
						|
                                             LIMITS.STEER_DELTA_UP, LIMITS.STEER_DELTA_DOWN,
 | 
						|
                                             LIMITS.STEER_ERROR_MAX, LIMITS.STEER_MAX)))
 | 
						|
 | 
						|
 | 
						|
def apply_std_steer_angle_limits(apply_angle, apply_angle_last, v_ego, LIMITS):
 | 
						|
  # pick angle rate limits based on wind up/down
 | 
						|
  steer_up = apply_angle_last * apply_angle >= 0. and abs(apply_angle) > abs(apply_angle_last)
 | 
						|
  rate_limits = LIMITS.ANGLE_RATE_LIMIT_UP if steer_up else LIMITS.ANGLE_RATE_LIMIT_DOWN
 | 
						|
 | 
						|
  angle_rate_lim = interp(v_ego, rate_limits.speed_bp, rate_limits.angle_v)
 | 
						|
  return clip(apply_angle, apply_angle_last - angle_rate_lim, apply_angle_last + angle_rate_lim)
 | 
						|
 | 
						|
 | 
						|
def common_fault_avoidance(fault_condition: bool, request: bool, above_limit_frames: int,
 | 
						|
                           max_above_limit_frames: int, max_mismatching_frames: int = 1):
 | 
						|
  """
 | 
						|
  Several cars have the ability to work around their EPS limits by cutting the
 | 
						|
  request bit of their LKAS message after a certain number of frames above the limit.
 | 
						|
  """
 | 
						|
 | 
						|
  # Count up to max_above_limit_frames, at which point we need to cut the request for above_limit_frames to avoid a fault
 | 
						|
  if request and fault_condition:
 | 
						|
    above_limit_frames += 1
 | 
						|
  else:
 | 
						|
    above_limit_frames = 0
 | 
						|
 | 
						|
  # Once we cut the request bit, count additionally to max_mismatching_frames before setting the request bit high again.
 | 
						|
  # Some brands do not respect our workaround without multiple messages on the bus, for example
 | 
						|
  if above_limit_frames > max_above_limit_frames:
 | 
						|
    request = False
 | 
						|
 | 
						|
  if above_limit_frames >= max_above_limit_frames + max_mismatching_frames:
 | 
						|
    above_limit_frames = 0
 | 
						|
 | 
						|
  return above_limit_frames, request
 | 
						|
 | 
						|
 | 
						|
def crc8_pedal(data):
 | 
						|
  crc = 0xFF    # standard init value
 | 
						|
  poly = 0xD5   # standard crc8: x8+x7+x6+x4+x2+1
 | 
						|
  size = len(data)
 | 
						|
  for i in range(size - 1, -1, -1):
 | 
						|
    crc ^= data[i]
 | 
						|
    for _ in range(8):
 | 
						|
      if ((crc & 0x80) != 0):
 | 
						|
        crc = ((crc << 1) ^ poly) & 0xFF
 | 
						|
      else:
 | 
						|
        crc <<= 1
 | 
						|
  return crc
 | 
						|
 | 
						|
 | 
						|
def create_gas_interceptor_command(packer, gas_amount, idx):
 | 
						|
  # Common gas pedal msg generator
 | 
						|
  enable = gas_amount > 0.001
 | 
						|
 | 
						|
  values = {
 | 
						|
    "ENABLE": enable,
 | 
						|
    "COUNTER_PEDAL": idx & 0xF,
 | 
						|
  }
 | 
						|
 | 
						|
  if enable:
 | 
						|
    values["GAS_COMMAND"] = gas_amount * 255.
 | 
						|
    values["GAS_COMMAND2"] = gas_amount * 255.
 | 
						|
 | 
						|
  dat = packer.make_can_msg("GAS_COMMAND", 0, values)[2]
 | 
						|
 | 
						|
  checksum = crc8_pedal(dat[:-1])
 | 
						|
  values["CHECKSUM_PEDAL"] = checksum
 | 
						|
 | 
						|
  return packer.make_can_msg("GAS_COMMAND", 0, values)
 | 
						|
 | 
						|
 | 
						|
def make_can_msg(addr, dat, bus):
 | 
						|
  return [addr, 0, dat, bus]
 | 
						|
 | 
						|
 | 
						|
def get_safety_config(safety_model, safety_param = None):
 | 
						|
  ret = car.CarParams.SafetyConfig.new_message()
 | 
						|
  ret.safetyModel = safety_model
 | 
						|
  if safety_param is not None:
 | 
						|
    ret.safetyParam = safety_param
 | 
						|
  return ret
 | 
						|
 | 
						|
 | 
						|
class CanBusBase:
 | 
						|
  offset: int
 | 
						|
 | 
						|
  def __init__(self, CP, fingerprint: Optional[Dict[int, Dict[int, int]]]) -> None:
 | 
						|
    if CP is None:
 | 
						|
      assert fingerprint is not None
 | 
						|
      num = max([k for k, v in fingerprint.items() if len(v)], default=0) // 4 + 1
 | 
						|
    else:
 | 
						|
      num = len(CP.safetyConfigs)
 | 
						|
    self.offset = 4 * (num - 1)
 | 
						|
 | 
						|
 | 
						|
class CanSignalRateCalculator:
 | 
						|
  """
 | 
						|
  Calculates the instantaneous rate of a CAN signal by using the counter
 | 
						|
  variable and the known frequency of the CAN message that contains it.
 | 
						|
  """
 | 
						|
  def __init__(self, frequency):
 | 
						|
    self.frequency = frequency
 | 
						|
    self.previous_counter = 0
 | 
						|
    self.previous_value = 0
 | 
						|
    self.rate = 0
 | 
						|
 | 
						|
  def update(self, current_value, current_counter):
 | 
						|
    if current_counter != self.previous_counter:
 | 
						|
      self.rate = (current_value - self.previous_value) * self.frequency
 | 
						|
 | 
						|
    self.previous_counter = current_counter
 | 
						|
    self.previous_value = current_value
 | 
						|
 | 
						|
    return self.rate |