openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

739 lines
27 KiB

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012-2013 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSE_QR_H
#define EIGEN_SPARSE_QR_H
namespace Eigen {
template<typename MatrixType, typename OrderingType> class SparseQR;
template<typename SparseQRType> struct SparseQRMatrixQReturnType;
template<typename SparseQRType> struct SparseQRMatrixQTransposeReturnType;
template<typename SparseQRType, typename Derived> struct SparseQR_QProduct;
namespace internal {
template <typename SparseQRType> struct traits<SparseQRMatrixQReturnType<SparseQRType> >
{
typedef typename SparseQRType::MatrixType ReturnType;
typedef typename ReturnType::StorageIndex StorageIndex;
typedef typename ReturnType::StorageKind StorageKind;
enum {
RowsAtCompileTime = Dynamic,
ColsAtCompileTime = Dynamic
};
};
template <typename SparseQRType> struct traits<SparseQRMatrixQTransposeReturnType<SparseQRType> >
{
typedef typename SparseQRType::MatrixType ReturnType;
};
template <typename SparseQRType, typename Derived> struct traits<SparseQR_QProduct<SparseQRType, Derived> >
{
typedef typename Derived::PlainObject ReturnType;
};
} // End namespace internal
/**
* \ingroup SparseQR_Module
* \class SparseQR
* \brief Sparse left-looking rank-revealing QR factorization
*
* This class implements a left-looking rank-revealing QR decomposition
* of sparse matrices. When a column has a norm less than a given tolerance
* it is implicitly permuted to the end. The QR factorization thus obtained is
* given by A*P = Q*R where R is upper triangular or trapezoidal.
*
* P is the column permutation which is the product of the fill-reducing and the
* rank-revealing permutations. Use colsPermutation() to get it.
*
* Q is the orthogonal matrix represented as products of Householder reflectors.
* Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
* You can then apply it to a vector.
*
* R is the sparse triangular or trapezoidal matrix. The later occurs when A is rank-deficient.
* matrixR().topLeftCorner(rank(), rank()) always returns a triangular factor of full rank.
*
* \tparam _MatrixType The type of the sparse matrix A, must be a column-major SparseMatrix<>
* \tparam _OrderingType The fill-reducing ordering method. See the \link OrderingMethods_Module
* OrderingMethods \endlink module for the list of built-in and external ordering methods.
*
* \implsparsesolverconcept
*
* \warning The input sparse matrix A must be in compressed mode (see SparseMatrix::makeCompressed()).
*
*/
template<typename _MatrixType, typename _OrderingType>
class SparseQR : public SparseSolverBase<SparseQR<_MatrixType,_OrderingType> >
{
protected:
typedef SparseSolverBase<SparseQR<_MatrixType,_OrderingType> > Base;
using Base::m_isInitialized;
public:
using Base::_solve_impl;
typedef _MatrixType MatrixType;
typedef _OrderingType OrderingType;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::StorageIndex StorageIndex;
typedef SparseMatrix<Scalar,ColMajor,StorageIndex> QRMatrixType;
typedef Matrix<StorageIndex, Dynamic, 1> IndexVector;
typedef Matrix<Scalar, Dynamic, 1> ScalarVector;
typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
enum {
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
public:
SparseQR () : m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false)
{ }
/** Construct a QR factorization of the matrix \a mat.
*
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
*
* \sa compute()
*/
explicit SparseQR(const MatrixType& mat) : m_analysisIsok(false), m_lastError(""), m_useDefaultThreshold(true),m_isQSorted(false),m_isEtreeOk(false)
{
compute(mat);
}
/** Computes the QR factorization of the sparse matrix \a mat.
*
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
*
* \sa analyzePattern(), factorize()
*/
void compute(const MatrixType& mat)
{
analyzePattern(mat);
factorize(mat);
}
void analyzePattern(const MatrixType& mat);
void factorize(const MatrixType& mat);
/** \returns the number of rows of the represented matrix.
*/
inline Index rows() const { return m_pmat.rows(); }
/** \returns the number of columns of the represented matrix.
*/
inline Index cols() const { return m_pmat.cols();}
/** \returns a const reference to the \b sparse upper triangular matrix R of the QR factorization.
* \warning The entries of the returned matrix are not sorted. This means that using it in algorithms
* expecting sorted entries will fail. This include random coefficient accesses (SpaseMatrix::coeff()),
* and coefficient-wise operations. Matrix products and triangular solves are fine though.
*
* To sort the entries, you can assign it to a row-major matrix, and if a column-major matrix
* is required, you can copy it again:
* \code
* SparseMatrix<double> R = qr.matrixR(); // column-major, not sorted!
* SparseMatrix<double,RowMajor> Rr = qr.matrixR(); // row-major, sorted
* SparseMatrix<double> Rc = Rr; // column-major, sorted
* \endcode
*/
const QRMatrixType& matrixR() const { return m_R; }
/** \returns the number of non linearly dependent columns as determined by the pivoting threshold.
*
* \sa setPivotThreshold()
*/
Index rank() const
{
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
return m_nonzeropivots;
}
/** \returns an expression of the matrix Q as products of sparse Householder reflectors.
* The common usage of this function is to apply it to a dense matrix or vector
* \code
* VectorXd B1, B2;
* // Initialize B1
* B2 = matrixQ() * B1;
* \endcode
*
* To get a plain SparseMatrix representation of Q:
* \code
* SparseMatrix<double> Q;
* Q = SparseQR<SparseMatrix<double> >(A).matrixQ();
* \endcode
* Internally, this call simply performs a sparse product between the matrix Q
* and a sparse identity matrix. However, due to the fact that the sparse
* reflectors are stored unsorted, two transpositions are needed to sort
* them before performing the product.
*/
SparseQRMatrixQReturnType<SparseQR> matrixQ() const
{ return SparseQRMatrixQReturnType<SparseQR>(*this); }
/** \returns a const reference to the column permutation P that was applied to A such that A*P = Q*R
* It is the combination of the fill-in reducing permutation and numerical column pivoting.
*/
const PermutationType& colsPermutation() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_outputPerm_c;
}
/** \returns A string describing the type of error.
* This method is provided to ease debugging, not to handle errors.
*/
std::string lastErrorMessage() const { return m_lastError; }
/** \internal */
template<typename Rhs, typename Dest>
bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &dest) const
{
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
Index rank = this->rank();
// Compute Q^T * b;
typename Dest::PlainObject y, b;
y = this->matrixQ().transpose() * B;
b = y;
// Solve with the triangular matrix R
y.resize((std::max<Index>)(cols(),y.rows()),y.cols());
y.topRows(rank) = this->matrixR().topLeftCorner(rank, rank).template triangularView<Upper>().solve(b.topRows(rank));
y.bottomRows(y.rows()-rank).setZero();
// Apply the column permutation
if (m_perm_c.size()) dest = colsPermutation() * y.topRows(cols());
else dest = y.topRows(cols());
m_info = Success;
return true;
}
/** Sets the threshold that is used to determine linearly dependent columns during the factorization.
*
* In practice, if during the factorization the norm of the column that has to be eliminated is below
* this threshold, then the entire column is treated as zero, and it is moved at the end.
*/
void setPivotThreshold(const RealScalar& threshold)
{
m_useDefaultThreshold = false;
m_threshold = threshold;
}
/** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
*
* \sa compute()
*/
template<typename Rhs>
inline const Solve<SparseQR, Rhs> solve(const MatrixBase<Rhs>& B) const
{
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
return Solve<SparseQR, Rhs>(*this, B.derived());
}
template<typename Rhs>
inline const Solve<SparseQR, Rhs> solve(const SparseMatrixBase<Rhs>& B) const
{
eigen_assert(m_isInitialized && "The factorization should be called first, use compute()");
eigen_assert(this->rows() == B.rows() && "SparseQR::solve() : invalid number of rows in the right hand side matrix");
return Solve<SparseQR, Rhs>(*this, B.derived());
}
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was successful,
* \c NumericalIssue if the QR factorization reports a numerical problem
* \c InvalidInput if the input matrix is invalid
*
* \sa iparm()
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_info;
}
/** \internal */
inline void _sort_matrix_Q()
{
if(this->m_isQSorted) return;
// The matrix Q is sorted during the transposition
SparseMatrix<Scalar, RowMajor, Index> mQrm(this->m_Q);
this->m_Q = mQrm;
this->m_isQSorted = true;
}
protected:
bool m_analysisIsok;
bool m_factorizationIsok;
mutable ComputationInfo m_info;
std::string m_lastError;
QRMatrixType m_pmat; // Temporary matrix
QRMatrixType m_R; // The triangular factor matrix
QRMatrixType m_Q; // The orthogonal reflectors
ScalarVector m_hcoeffs; // The Householder coefficients
PermutationType m_perm_c; // Fill-reducing Column permutation
PermutationType m_pivotperm; // The permutation for rank revealing
PermutationType m_outputPerm_c; // The final column permutation
RealScalar m_threshold; // Threshold to determine null Householder reflections
bool m_useDefaultThreshold; // Use default threshold
Index m_nonzeropivots; // Number of non zero pivots found
IndexVector m_etree; // Column elimination tree
IndexVector m_firstRowElt; // First element in each row
bool m_isQSorted; // whether Q is sorted or not
bool m_isEtreeOk; // whether the elimination tree match the initial input matrix
template <typename, typename > friend struct SparseQR_QProduct;
};
/** \brief Preprocessing step of a QR factorization
*
* \warning The matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
*
* In this step, the fill-reducing permutation is computed and applied to the columns of A
* and the column elimination tree is computed as well. Only the sparsity pattern of \a mat is exploited.
*
* \note In this step it is assumed that there is no empty row in the matrix \a mat.
*/
template <typename MatrixType, typename OrderingType>
void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
{
eigen_assert(mat.isCompressed() && "SparseQR requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to SparseQR");
// Copy to a column major matrix if the input is rowmajor
typename internal::conditional<MatrixType::IsRowMajor,QRMatrixType,const MatrixType&>::type matCpy(mat);
// Compute the column fill reducing ordering
OrderingType ord;
ord(matCpy, m_perm_c);
Index n = mat.cols();
Index m = mat.rows();
Index diagSize = (std::min)(m,n);
if (!m_perm_c.size())
{
m_perm_c.resize(n);
m_perm_c.indices().setLinSpaced(n, 0,StorageIndex(n-1));
}
// Compute the column elimination tree of the permuted matrix
m_outputPerm_c = m_perm_c.inverse();
internal::coletree(matCpy, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
m_isEtreeOk = true;
m_R.resize(m, n);
m_Q.resize(m, diagSize);
// Allocate space for nonzero elements : rough estimation
m_R.reserve(2*mat.nonZeros()); //FIXME Get a more accurate estimation through symbolic factorization with the etree
m_Q.reserve(2*mat.nonZeros());
m_hcoeffs.resize(diagSize);
m_analysisIsok = true;
}
/** \brief Performs the numerical QR factorization of the input matrix
*
* The function SparseQR::analyzePattern(const MatrixType&) must have been called beforehand with
* a matrix having the same sparsity pattern than \a mat.
*
* \param mat The sparse column-major matrix
*/
template <typename MatrixType, typename OrderingType>
void SparseQR<MatrixType,OrderingType>::factorize(const MatrixType& mat)
{
using std::abs;
eigen_assert(m_analysisIsok && "analyzePattern() should be called before this step");
StorageIndex m = StorageIndex(mat.rows());
StorageIndex n = StorageIndex(mat.cols());
StorageIndex diagSize = (std::min)(m,n);
IndexVector mark((std::max)(m,n)); mark.setConstant(-1); // Record the visited nodes
IndexVector Ridx(n), Qidx(m); // Store temporarily the row indexes for the current column of R and Q
Index nzcolR, nzcolQ; // Number of nonzero for the current column of R and Q
ScalarVector tval(m); // The dense vector used to compute the current column
RealScalar pivotThreshold = m_threshold;
m_R.setZero();
m_Q.setZero();
m_pmat = mat;
if(!m_isEtreeOk)
{
m_outputPerm_c = m_perm_c.inverse();
internal::coletree(m_pmat, m_etree, m_firstRowElt, m_outputPerm_c.indices().data());
m_isEtreeOk = true;
}
m_pmat.uncompress(); // To have the innerNonZeroPtr allocated
// Apply the fill-in reducing permutation lazily:
{
// If the input is row major, copy the original column indices,
// otherwise directly use the input matrix
//
IndexVector originalOuterIndicesCpy;
const StorageIndex *originalOuterIndices = mat.outerIndexPtr();
if(MatrixType::IsRowMajor)
{
originalOuterIndicesCpy = IndexVector::Map(m_pmat.outerIndexPtr(),n+1);
originalOuterIndices = originalOuterIndicesCpy.data();
}
for (int i = 0; i < n; i++)
{
Index p = m_perm_c.size() ? m_perm_c.indices()(i) : i;
m_pmat.outerIndexPtr()[p] = originalOuterIndices[i];
m_pmat.innerNonZeroPtr()[p] = originalOuterIndices[i+1] - originalOuterIndices[i];
}
}
/* Compute the default threshold as in MatLab, see:
* Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
* Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011, Page 8:3
*/
if(m_useDefaultThreshold)
{
RealScalar max2Norm = 0.0;
for (int j = 0; j < n; j++) max2Norm = numext::maxi(max2Norm, m_pmat.col(j).norm());
if(max2Norm==RealScalar(0))
max2Norm = RealScalar(1);
pivotThreshold = 20 * (m + n) * max2Norm * NumTraits<RealScalar>::epsilon();
}
// Initialize the numerical permutation
m_pivotperm.setIdentity(n);
StorageIndex nonzeroCol = 0; // Record the number of valid pivots
m_Q.startVec(0);
// Left looking rank-revealing QR factorization: compute a column of R and Q at a time
for (StorageIndex col = 0; col < n; ++col)
{
mark.setConstant(-1);
m_R.startVec(col);
mark(nonzeroCol) = col;
Qidx(0) = nonzeroCol;
nzcolR = 0; nzcolQ = 1;
bool found_diag = nonzeroCol>=m;
tval.setZero();
// Symbolic factorization: find the nonzero locations of the column k of the factors R and Q, i.e.,
// all the nodes (with indexes lower than rank) reachable through the column elimination tree (etree) rooted at node k.
// Note: if the diagonal entry does not exist, then its contribution must be explicitly added,
// thus the trick with found_diag that permits to do one more iteration on the diagonal element if this one has not been found.
for (typename QRMatrixType::InnerIterator itp(m_pmat, col); itp || !found_diag; ++itp)
{
StorageIndex curIdx = nonzeroCol;
if(itp) curIdx = StorageIndex(itp.row());
if(curIdx == nonzeroCol) found_diag = true;
// Get the nonzeros indexes of the current column of R
StorageIndex st = m_firstRowElt(curIdx); // The traversal of the etree starts here
if (st < 0 )
{
m_lastError = "Empty row found during numerical factorization";
m_info = InvalidInput;
return;
}
// Traverse the etree
Index bi = nzcolR;
for (; mark(st) != col; st = m_etree(st))
{
Ridx(nzcolR) = st; // Add this row to the list,
mark(st) = col; // and mark this row as visited
nzcolR++;
}
// Reverse the list to get the topological ordering
Index nt = nzcolR-bi;
for(Index i = 0; i < nt/2; i++) std::swap(Ridx(bi+i), Ridx(nzcolR-i-1));
// Copy the current (curIdx,pcol) value of the input matrix
if(itp) tval(curIdx) = itp.value();
else tval(curIdx) = Scalar(0);
// Compute the pattern of Q(:,k)
if(curIdx > nonzeroCol && mark(curIdx) != col )
{
Qidx(nzcolQ) = curIdx; // Add this row to the pattern of Q,
mark(curIdx) = col; // and mark it as visited
nzcolQ++;
}
}
// Browse all the indexes of R(:,col) in reverse order
for (Index i = nzcolR-1; i >= 0; i--)
{
Index curIdx = Ridx(i);
// Apply the curIdx-th householder vector to the current column (temporarily stored into tval)
Scalar tdot(0);
// First compute q' * tval
tdot = m_Q.col(curIdx).dot(tval);
tdot *= m_hcoeffs(curIdx);
// Then update tval = tval - q * tau
// FIXME: tval -= tdot * m_Q.col(curIdx) should amount to the same (need to check/add support for efficient "dense ?= sparse")
for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq)
tval(itq.row()) -= itq.value() * tdot;
// Detect fill-in for the current column of Q
if(m_etree(Ridx(i)) == nonzeroCol)
{
for (typename QRMatrixType::InnerIterator itq(m_Q, curIdx); itq; ++itq)
{
StorageIndex iQ = StorageIndex(itq.row());
if (mark(iQ) != col)
{
Qidx(nzcolQ++) = iQ; // Add this row to the pattern of Q,
mark(iQ) = col; // and mark it as visited
}
}
}
} // End update current column
Scalar tau = RealScalar(0);
RealScalar beta = 0;
if(nonzeroCol < diagSize)
{
// Compute the Householder reflection that eliminate the current column
// FIXME this step should call the Householder module.
Scalar c0 = nzcolQ ? tval(Qidx(0)) : Scalar(0);
// First, the squared norm of Q((col+1):m, col)
RealScalar sqrNorm = 0.;
for (Index itq = 1; itq < nzcolQ; ++itq) sqrNorm += numext::abs2(tval(Qidx(itq)));
if(sqrNorm == RealScalar(0) && numext::imag(c0) == RealScalar(0))
{
beta = numext::real(c0);
tval(Qidx(0)) = 1;
}
else
{
using std::sqrt;
beta = sqrt(numext::abs2(c0) + sqrNorm);
if(numext::real(c0) >= RealScalar(0))
beta = -beta;
tval(Qidx(0)) = 1;
for (Index itq = 1; itq < nzcolQ; ++itq)
tval(Qidx(itq)) /= (c0 - beta);
tau = numext::conj((beta-c0) / beta);
}
}
// Insert values in R
for (Index i = nzcolR-1; i >= 0; i--)
{
Index curIdx = Ridx(i);
if(curIdx < nonzeroCol)
{
m_R.insertBackByOuterInnerUnordered(col, curIdx) = tval(curIdx);
tval(curIdx) = Scalar(0.);
}
}
if(nonzeroCol < diagSize && abs(beta) >= pivotThreshold)
{
m_R.insertBackByOuterInner(col, nonzeroCol) = beta;
// The householder coefficient
m_hcoeffs(nonzeroCol) = tau;
// Record the householder reflections
for (Index itq = 0; itq < nzcolQ; ++itq)
{
Index iQ = Qidx(itq);
m_Q.insertBackByOuterInnerUnordered(nonzeroCol,iQ) = tval(iQ);
tval(iQ) = Scalar(0.);
}
nonzeroCol++;
if(nonzeroCol<diagSize)
m_Q.startVec(nonzeroCol);
}
else
{
// Zero pivot found: move implicitly this column to the end
for (Index j = nonzeroCol; j < n-1; j++)
std::swap(m_pivotperm.indices()(j), m_pivotperm.indices()[j+1]);
// Recompute the column elimination tree
internal::coletree(m_pmat, m_etree, m_firstRowElt, m_pivotperm.indices().data());
m_isEtreeOk = false;
}
}
m_hcoeffs.tail(diagSize-nonzeroCol).setZero();
// Finalize the column pointers of the sparse matrices R and Q
m_Q.finalize();
m_Q.makeCompressed();
m_R.finalize();
m_R.makeCompressed();
m_isQSorted = false;
m_nonzeropivots = nonzeroCol;
if(nonzeroCol<n)
{
// Permute the triangular factor to put the 'dead' columns to the end
QRMatrixType tempR(m_R);
m_R = tempR * m_pivotperm;
// Update the column permutation
m_outputPerm_c = m_outputPerm_c * m_pivotperm;
}
m_isInitialized = true;
m_factorizationIsok = true;
m_info = Success;
}
template <typename SparseQRType, typename Derived>
struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived> >
{
typedef typename SparseQRType::QRMatrixType MatrixType;
typedef typename SparseQRType::Scalar Scalar;
// Get the references
SparseQR_QProduct(const SparseQRType& qr, const Derived& other, bool transpose) :
m_qr(qr),m_other(other),m_transpose(transpose) {}
inline Index rows() const { return m_transpose ? m_qr.rows() : m_qr.cols(); }
inline Index cols() const { return m_other.cols(); }
// Assign to a vector
template<typename DesType>
void evalTo(DesType& res) const
{
Index m = m_qr.rows();
Index n = m_qr.cols();
Index diagSize = (std::min)(m,n);
res = m_other;
if (m_transpose)
{
eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
//Compute res = Q' * other column by column
for(Index j = 0; j < res.cols(); j++){
for (Index k = 0; k < diagSize; k++)
{
Scalar tau = Scalar(0);
tau = m_qr.m_Q.col(k).dot(res.col(j));
if(tau==Scalar(0)) continue;
tau = tau * m_qr.m_hcoeffs(k);
res.col(j) -= tau * m_qr.m_Q.col(k);
}
}
}
else
{
eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
// Compute res = Q * other column by column
for(Index j = 0; j < res.cols(); j++)
{
for (Index k = diagSize-1; k >=0; k--)
{
Scalar tau = Scalar(0);
tau = m_qr.m_Q.col(k).dot(res.col(j));
if(tau==Scalar(0)) continue;
tau = tau * m_qr.m_hcoeffs(k);
res.col(j) -= tau * m_qr.m_Q.col(k);
}
}
}
}
const SparseQRType& m_qr;
const Derived& m_other;
bool m_transpose;
};
template<typename SparseQRType>
struct SparseQRMatrixQReturnType : public EigenBase<SparseQRMatrixQReturnType<SparseQRType> >
{
typedef typename SparseQRType::Scalar Scalar;
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
enum {
RowsAtCompileTime = Dynamic,
ColsAtCompileTime = Dynamic
};
explicit SparseQRMatrixQReturnType(const SparseQRType& qr) : m_qr(qr) {}
template<typename Derived>
SparseQR_QProduct<SparseQRType, Derived> operator*(const MatrixBase<Derived>& other)
{
return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(),false);
}
SparseQRMatrixQTransposeReturnType<SparseQRType> adjoint() const
{
return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
}
inline Index rows() const { return m_qr.rows(); }
inline Index cols() const { return (std::min)(m_qr.rows(),m_qr.cols()); }
// To use for operations with the transpose of Q
SparseQRMatrixQTransposeReturnType<SparseQRType> transpose() const
{
return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
}
const SparseQRType& m_qr;
};
template<typename SparseQRType>
struct SparseQRMatrixQTransposeReturnType
{
explicit SparseQRMatrixQTransposeReturnType(const SparseQRType& qr) : m_qr(qr) {}
template<typename Derived>
SparseQR_QProduct<SparseQRType,Derived> operator*(const MatrixBase<Derived>& other)
{
return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(), true);
}
const SparseQRType& m_qr;
};
namespace internal {
template<typename SparseQRType>
struct evaluator_traits<SparseQRMatrixQReturnType<SparseQRType> >
{
typedef typename SparseQRType::MatrixType MatrixType;
typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
typedef SparseShape Shape;
};
template< typename DstXprType, typename SparseQRType>
struct Assignment<DstXprType, SparseQRMatrixQReturnType<SparseQRType>, internal::assign_op<typename DstXprType::Scalar,typename DstXprType::Scalar>, Sparse2Sparse>
{
typedef SparseQRMatrixQReturnType<SparseQRType> SrcXprType;
typedef typename DstXprType::Scalar Scalar;
typedef typename DstXprType::StorageIndex StorageIndex;
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &/*func*/)
{
typename DstXprType::PlainObject idMat(src.m_qr.rows(), src.m_qr.rows());
idMat.setIdentity();
// Sort the sparse householder reflectors if needed
const_cast<SparseQRType *>(&src.m_qr)->_sort_matrix_Q();
dst = SparseQR_QProduct<SparseQRType, DstXprType>(src.m_qr, idMat, false);
}
};
template< typename DstXprType, typename SparseQRType>
struct Assignment<DstXprType, SparseQRMatrixQReturnType<SparseQRType>, internal::assign_op<typename DstXprType::Scalar,typename DstXprType::Scalar>, Sparse2Dense>
{
typedef SparseQRMatrixQReturnType<SparseQRType> SrcXprType;
typedef typename DstXprType::Scalar Scalar;
typedef typename DstXprType::StorageIndex StorageIndex;
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &/*func*/)
{
dst = src.m_qr.matrixQ() * DstXprType::Identity(src.m_qr.rows(), src.m_qr.rows());
}
};
} // end namespace internal
} // end namespace Eigen
#endif