openpilot is an open source driver assistance system. openpilot performs the functions of Automated Lane Centering and Adaptive Cruise Control for over 200 supported car makes and models.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

288 lines
12 KiB

#!/usr/bin/env python3
import argparse
import json
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
import numpy as np
import sys
from collections import defaultdict
from openpilot.tools.lib.logreader import LogReader
DEMO_ROUTE = "9f583b1d93915c31|2022-05-18--10-49-51--0"
COLORS = ['blue', 'green', 'red', 'yellow', 'orange', 'purple']
PLOT_SERVICES = ['card', 'controlsd'] # , 'boardd']
def plot(lr):
seen = set()
aligned = False
start_time = None
# dict of services to events per inferred frame
times = {s: [[]] for s in PLOT_SERVICES}
first_event = None
# temp_times = {s: [] for s in PLOT_SERVICES} # holds only current frame of services
timestamps = [json.loads(msg.logMessage) for msg in lr if msg.which() == 'logMessage' and 'timestamp' in msg.logMessage]
# print(timestamps)
timestamps = sorted(timestamps, key=lambda m: float(m['msg']['timestamp']['time']))
# closely matches timestamp time
start_time = next(msg.logMonoTime for msg in lr)
for jmsg in timestamps:
if len(times[PLOT_SERVICES[0]]) > 1400:
continue
# print()
# print(msg.logMonoTime)
time = int(jmsg['msg']['timestamp']['time'])
service = jmsg['ctx']['daemon']
event = jmsg['msg']['timestamp']['event']
# print(jmsg)
# print(seen)
if service in PLOT_SERVICES and first_event is None:
first_event = event
# Align the best we can; wait for all to be seen and this is the first event
# TODO: detect first logMessage correctly by keeping track of events before aligned
aligned = aligned or (all(s in seen for s in PLOT_SERVICES) and event == first_event)
if not aligned:
seen.add(service)
continue
if service in PLOT_SERVICES:
# new frame when we've seen this event before
new_frame = event in {e[1] for e in times[service][-1]}
if new_frame:
times[service].append([])
# print(msg.logMonoTime, jmsg)
print('new_frame', new_frame)
times[service][-1].append(((time - start_time) * 1e-6, event))
points = {"x": [], "y": [], "labels": []}
height = 0.9
offsets = [[0, -10 * j] for j in range(len(PLOT_SERVICES))]
fig, ax = plt.subplots()
for idx, service_times in enumerate(zip(*times.values())):
print()
print('idx', idx)
service_bars = []
for j, (service, frame_times) in enumerate(zip(times.keys(), service_times)):
if idx + 1 == len(times[service]):
break
print(service, frame_times)
start = frame_times[0][0]
# use the first event time from next frame
end = times[service][idx + 1][0][0] # frame_times[-1][0]
print('start, end', start, end)
service_bars.append((start, end - start))
for event in frame_times:
points['x'].append(event[0])
points['y'].append(idx - j * 1)
points['labels'].append(event[1])
print(service_bars)
# offset = offset_services
# offset each service
for j, sb in enumerate(service_bars):
ax.broken_barh([sb], (idx - height / 2 - j * 1, height), facecolors=[COLORS[j]], alpha=0.5) # , offsets=offsets)
# ax.broken_barh(service_bars, (idx - height / 2, height), facecolors=COLORS, alpha=0.5, offsets=offsets)
scatter = ax.scatter(points['x'], points['y'], marker='d', edgecolor='black')
txt = ax.text(0, 0, '', ha='center', fontsize=8, color='red')
ax.set_xlabel('milliseconds')
plt.legend(handles=[mpatches.Patch(color=COLORS[i], label=PLOT_SERVICES[i]) for i in range(len(PLOT_SERVICES))])
def hover(event):
txt.set_text("")
status, pts = scatter.contains(event)
txt.set_visible(status)
if status:
pt_idx = pts['ind'][0]
txt.set_text(f"{points['labels'][pt_idx]} ({points['x'][pt_idx]:0.2f} ms)")
txt.set_position((event.xdata, event.ydata + 1))
event.canvas.draw()
fig.canvas.mpl_connect("motion_notify_event", hover)
plt.show()
# plt.pause(1000)
return times, points
def plot_dist(lr, poll):
lr = list(lr)
# carState_service_times = []
# prev_time = None
# for msg in lr:
# if msg.which() == 'carState':
# if prev_time is not None:
# carState_service_times.append((msg.logMonoTime - prev_time) * 1e-6)
# prev_time = msg.logMonoTime
# logMonoTime is from logmessaged, not when the timestamp was created. some messages are out of order
timestamps = [json.loads(msg.logMessage) for msg in tqdm(lr) if msg.which() == 'logMessage' and '"timestamp"' in msg.logMessage]
timestamps = sorted(timestamps, key=lambda m: float(m['msg']['timestamp']['time']))
timestamps = [m for m in tqdm(timestamps) if m['ctx']['daemon'] in PLOT_SERVICES]
initialized = False
ready = False
start_card_loop = None
received_can = None
state_updated = None
sent_carState = None
state_published = None
sent_carControl = None
card_e2e_loop_times = []
card_carInterface_update_times = []
carState_recv_times = []
carControl_recv_times = []
carState_to_carControl_times = []
card_controls_times = []
card_loop_times = []
for jmsg in tqdm(timestamps):
time = int(jmsg['msg']['timestamp']['time'])
service = jmsg['ctx']['daemon']
event = jmsg['msg']['timestamp']['event']
if event == 'Initialized' and service == 'card':
initialized = True
if initialized and event == 'Start card':
ready = True
if not ready:
continue
if event == 'Start card' and service == 'card':
if start_card_loop is not None:
card_e2e_loop_times.append((time - start_card_loop) * 1e-6)
start_card_loop = time
elif event == 'Received can' and service == 'card':
# measuring from this time does not include wait time for can packet, so this measures true card loop time taken
received_can = time
elif event == 'State updated' and service == 'card':
state_updated = time
card_carInterface_update_times.append((time - received_can) * 1e-6)
elif event == 'Sent carState' and service == 'card':
sent_carState = time
elif event == 'Got carState' and service == 'controlsd':
# TODO why none
if sent_carState is not None:
carState_recv_times.append((time - sent_carState) * 1e-6)
elif event == 'Logs published' and service == 'controlsd':
sent_carControl = time
elif event == 'State published' and service == 'card':
state_published = time
if poll: # only makes sense when polling
# from carState sent to carControl received
carControl_recv_times.append((time - sent_carControl) * 1e-6)
carState_to_carControl_times.append((time - sent_carState) * 1e-6)
elif event == 'Controls updated' and service == 'card':
card_controls_times.append((time - state_published) * 1e-6)
card_loop_times.append((time - received_can) * 1e-6) # this is time NOT spent waiting for can
fig, ax = plt.subplots(3)
fig.suptitle('Polling/waiting on carControl from controlsd' if poll else 'Not polling on carControl')
ax[0].set_title('cereal communication times')
ax[0].set_xlim(0, 16)
sns.histplot(carState_recv_times, kde=True, ax=ax[0],
label=f'carState->controlsd recv time: \n minmax: {min(carState_recv_times):0.2f}, {max(carState_recv_times):>5.2f}, ' +
f'med: {np.median(carState_recv_times):0.2f}, mean: {np.mean(carState_recv_times):0.2f}, ' +
f'95th: {np.percentile(carState_recv_times, 95):0.2f}')
if poll:
sns.histplot(carControl_recv_times, kde=True, ax=ax[0],
label=f'carControl->card recv time (polling on carControl): \n minmax: {min(carControl_recv_times):0.2f}, {max(carControl_recv_times):>5.2f}, ' +
f'med: {np.median(carControl_recv_times):0.2f}, mean: {np.mean(carControl_recv_times):0.2f}, ' +
f'95th: {np.percentile(carControl_recv_times, 95):0.2f}')
ax[0].legend()
ax[1].set_title('card loop times')
ax[1].set_xlim(0, 16)
if poll:
sns.histplot(carState_to_carControl_times, kde=True, ax=ax[1],
label=f'waiting on carControl (polling on carControl): \n minmax: {min(carState_to_carControl_times):0.2f}, {max(carState_to_carControl_times):>5.2f}, ' +
f'med: {np.median(carState_to_carControl_times):0.2f}, mean: {np.mean(carState_to_carControl_times):0.2f}, ' +
f'95th: {np.percentile(carState_to_carControl_times, 95):0.2f}')
sns.histplot(card_controls_times, kde=True, ax=ax[1], label=f'CI.apply(): \n minmax: {min(card_controls_times):0.2f}, {max(card_controls_times):>6.2f}, ' +
f'med: {np.median(card_controls_times):0.2f}, mean: {np.mean(card_controls_times):0.2f}, ' +
f'95th: {np.percentile(card_controls_times, 95):0.2f}')
sns.histplot(card_carInterface_update_times, kde=True, ax=ax[1],
label=f'CI.update(): \n minmax: {min(card_carInterface_update_times):0.2f}, {max(card_carInterface_update_times):>5.2f}, ' +
f'med: {np.median(card_carInterface_update_times):0.2f}, mean: {np.mean(card_carInterface_update_times):0.2f}, ' +
f'95th: {np.percentile(card_carInterface_update_times, 95):0.2f}')
ax[1].legend()
ax[2].set_title('total card loop time')
ax[2].set_xlim(0, 16)
sns.histplot(card_loop_times, kde=True, ax=ax[2], label=f'entire card loop time: \n minmax: {min(card_loop_times):0.2f}, {max(card_loop_times):>5.2f}, ' +
f'med: {np.median(card_loop_times):0.2f}, mean: {np.mean(card_loop_times):0.2f}, ' +
f'95th: {np.percentile(card_loop_times, 95):0.2f}')
ax[2].legend()
ax[2].set_xlabel('ms')
return timestamps, card_loop_times, carState_recv_times, carState_to_carControl_times
if __name__ == "__main__":
# parser = argparse.ArgumentParser(description="A tool for analyzing openpilot's end-to-end latency",
# formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# parser.add_argument("--demo", action="store_true", help="Use the demo route instead of providing one")
# parser.add_argument("route_or_segment_name", nargs='?', help="The route to print")
#
# if len(sys.argv) == 1:
# parser.print_help()
# sys.exit()
# args = parser.parse_args()
# r = DEMO_ROUTE if args.demo else args.route_or_segment_name.strip()
# lr = LogReader(r, sort_by_time=True)
# lr = LogReader('08e4c2a99df165b1/00000016--c3a4ca99ec/0', sort_by_time=True) # normal
# lr = LogReader('08e4c2a99df165b1/00000017--e2d24ab118/0', sort_by_time=True) # polls on carControl
# lr = LogReader('08e4c2a99df165b1/00000018--cf65e47c24/0', sort_by_time=True) # polls on carControl, sends it earlier
# lr = LogReader('08e4c2a99df165b1/00000019--e73e3ab4df/0', sort_by_time=True) # polls on carControl, more logging
# lr = LogReader('08e4c2a99df165b1/0000002c--b40eb82d6d/0:-1', sort_by_time=True) # polls on carControl
# lr = LogReader('08e4c2a99df165b1/0000002d--ccebe8b617/0:1', sort_by_time=True) # no poll on carControl
# lr = LogReader('08e4c2a99df165b1/0000002e--fd98f6603b/:7', sort_by_time=True) # no poll on carControl (no timestamps)
POLL = False # carControl polling or not
if POLL:
# lr = LogReader('08e4c2a99df165b1/00000032--2c1d57d894/0', sort_by_time=True) # carControl poll, w/ reduced timestamps
# lr = LogReader('08e4c2a99df165b1/00000033--1e2720e55b/0', sort_by_time=True) # carControl poll, w/ poll flag (FINAL)
lr = LogReader('08e4c2a99df165b1/00000036--4eb8126f04', sort_by_time=True) # carControl poll, w/ poll flag & Received can (FINAL v2)
else:
# lr = LogReader('08e4c2a99df165b1/00000031--f6f38d1ccf/0', sort_by_time=True) # no carControl poll, w/ reduced timestamps
# lr = LogReader('08e4c2a99df165b1/00000035--0abfde9c4a/0', sort_by_time=True) # no carControl poll, w/ poll flag (FINAL)
lr = LogReader('08e4c2a99df165b1/00000037--f6294815ac', sort_by_time=True) # no carControl poll, w/ poll flag & Received can (FINAL v2)
timestamps = plot_dist(lr, poll=POLL)
# times, points = plot(lr)