You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							125 lines
						
					
					
						
							4.4 KiB
						
					
					
				
			
		
		
	
	
							125 lines
						
					
					
						
							4.4 KiB
						
					
					
				import os
 | 
						|
import numpy as np
 | 
						|
 | 
						|
import selfdrive.messaging as messaging
 | 
						|
from selfdrive.swaglog import cloudlog
 | 
						|
from common.realtime import sec_since_boot
 | 
						|
from selfdrive.controls.lib.radar_helpers import _LEAD_ACCEL_TAU
 | 
						|
from selfdrive.controls.lib.longitudinal_mpc import libmpc_py
 | 
						|
from selfdrive.controls.lib.drive_helpers import MPC_COST_LONG
 | 
						|
 | 
						|
LOG_MPC = os.environ.get('LOG_MPC', False)
 | 
						|
 | 
						|
 | 
						|
class LongitudinalMpc(object):
 | 
						|
  def __init__(self, mpc_id, live_longitudinal_mpc):
 | 
						|
    self.live_longitudinal_mpc = live_longitudinal_mpc
 | 
						|
    self.mpc_id = mpc_id
 | 
						|
 | 
						|
    self.setup_mpc()
 | 
						|
    self.v_mpc = 0.0
 | 
						|
    self.v_mpc_future = 0.0
 | 
						|
    self.a_mpc = 0.0
 | 
						|
    self.v_cruise = 0.0
 | 
						|
    self.prev_lead_status = False
 | 
						|
    self.prev_lead_x = 0.0
 | 
						|
    self.new_lead = False
 | 
						|
 | 
						|
    self.last_cloudlog_t = 0.0
 | 
						|
 | 
						|
  def send_mpc_solution(self, qp_iterations, calculation_time):
 | 
						|
    qp_iterations = max(0, qp_iterations)
 | 
						|
    dat = messaging.new_message()
 | 
						|
    dat.init('liveLongitudinalMpc')
 | 
						|
    dat.liveLongitudinalMpc.xEgo = list(self.mpc_solution[0].x_ego)
 | 
						|
    dat.liveLongitudinalMpc.vEgo = list(self.mpc_solution[0].v_ego)
 | 
						|
    dat.liveLongitudinalMpc.aEgo = list(self.mpc_solution[0].a_ego)
 | 
						|
    dat.liveLongitudinalMpc.xLead = list(self.mpc_solution[0].x_l)
 | 
						|
    dat.liveLongitudinalMpc.vLead = list(self.mpc_solution[0].v_l)
 | 
						|
    dat.liveLongitudinalMpc.cost = self.mpc_solution[0].cost
 | 
						|
    dat.liveLongitudinalMpc.aLeadTau = self.a_lead_tau
 | 
						|
    dat.liveLongitudinalMpc.qpIterations = qp_iterations
 | 
						|
    dat.liveLongitudinalMpc.mpcId = self.mpc_id
 | 
						|
    dat.liveLongitudinalMpc.calculationTime = calculation_time
 | 
						|
    self.live_longitudinal_mpc.send(dat.to_bytes())
 | 
						|
 | 
						|
  def setup_mpc(self):
 | 
						|
    ffi, self.libmpc = libmpc_py.get_libmpc(self.mpc_id)
 | 
						|
    self.libmpc.init(MPC_COST_LONG.TTC, MPC_COST_LONG.DISTANCE,
 | 
						|
                     MPC_COST_LONG.ACCELERATION, MPC_COST_LONG.JERK)
 | 
						|
 | 
						|
    self.mpc_solution = ffi.new("log_t *")
 | 
						|
    self.cur_state = ffi.new("state_t *")
 | 
						|
    self.cur_state[0].v_ego = 0
 | 
						|
    self.cur_state[0].a_ego = 0
 | 
						|
    self.a_lead_tau = _LEAD_ACCEL_TAU
 | 
						|
 | 
						|
  def set_cur_state(self, v, a):
 | 
						|
    self.cur_state[0].v_ego = v
 | 
						|
    self.cur_state[0].a_ego = a
 | 
						|
 | 
						|
  def update(self, CS, lead, v_cruise_setpoint):
 | 
						|
    v_ego = CS.vEgo
 | 
						|
 | 
						|
    # Setup current mpc state
 | 
						|
    self.cur_state[0].x_ego = 0.0
 | 
						|
 | 
						|
    if lead is not None and lead.status:
 | 
						|
      x_lead = lead.dRel
 | 
						|
      v_lead = max(0.0, lead.vLead)
 | 
						|
      a_lead = lead.aLeadK
 | 
						|
 | 
						|
      if (v_lead < 0.1 or -a_lead / 2.0 > v_lead):
 | 
						|
        v_lead = 0.0
 | 
						|
        a_lead = 0.0
 | 
						|
 | 
						|
      self.a_lead_tau = lead.aLeadTau
 | 
						|
      self.new_lead = False
 | 
						|
      if not self.prev_lead_status or abs(x_lead - self.prev_lead_x) > 2.5:
 | 
						|
        self.libmpc.init_with_simulation(self.v_mpc, x_lead, v_lead, a_lead, self.a_lead_tau)
 | 
						|
        self.new_lead = True
 | 
						|
 | 
						|
      self.prev_lead_status = True
 | 
						|
      self.prev_lead_x = x_lead
 | 
						|
      self.cur_state[0].x_l = x_lead
 | 
						|
      self.cur_state[0].v_l = v_lead
 | 
						|
    else:
 | 
						|
      self.prev_lead_status = False
 | 
						|
      # Fake a fast lead car, so mpc keeps running
 | 
						|
      self.cur_state[0].x_l = 50.0
 | 
						|
      self.cur_state[0].v_l = v_ego + 10.0
 | 
						|
      a_lead = 0.0
 | 
						|
      self.a_lead_tau = _LEAD_ACCEL_TAU
 | 
						|
 | 
						|
    # Calculate mpc
 | 
						|
    t = sec_since_boot()
 | 
						|
    n_its = self.libmpc.run_mpc(self.cur_state, self.mpc_solution, self.a_lead_tau, a_lead)
 | 
						|
    duration = int((sec_since_boot() - t) * 1e9)
 | 
						|
 | 
						|
    if LOG_MPC:
 | 
						|
      self.send_mpc_solution(n_its, duration)
 | 
						|
 | 
						|
    # Get solution. MPC timestep is 0.2 s, so interpolation to 0.05 s is needed
 | 
						|
    self.v_mpc = self.mpc_solution[0].v_ego[1]
 | 
						|
    self.a_mpc = self.mpc_solution[0].a_ego[1]
 | 
						|
    self.v_mpc_future = self.mpc_solution[0].v_ego[10]
 | 
						|
 | 
						|
    # Reset if NaN or goes through lead car
 | 
						|
    dls = np.array(list(self.mpc_solution[0].x_l)) - np.array(list(self.mpc_solution[0].x_ego))
 | 
						|
    crashing = min(dls) < -50.0
 | 
						|
    nans = np.any(np.isnan(list(self.mpc_solution[0].v_ego)))
 | 
						|
    backwards = min(list(self.mpc_solution[0].v_ego)) < -0.01
 | 
						|
 | 
						|
    if ((backwards or crashing) and self.prev_lead_status) or nans:
 | 
						|
      if t > self.last_cloudlog_t + 5.0:
 | 
						|
        self.last_cloudlog_t = t
 | 
						|
        cloudlog.warning("Longitudinal mpc %d reset - backwards: %s crashing: %s nan: %s" % (
 | 
						|
                          self.mpc_id, backwards, crashing, nans))
 | 
						|
 | 
						|
      self.libmpc.init(MPC_COST_LONG.TTC, MPC_COST_LONG.DISTANCE,
 | 
						|
                       MPC_COST_LONG.ACCELERATION, MPC_COST_LONG.JERK)
 | 
						|
      self.cur_state[0].v_ego = v_ego
 | 
						|
      self.cur_state[0].a_ego = 0.0
 | 
						|
      self.v_mpc = v_ego
 | 
						|
      self.a_mpc = CS.aEgo
 | 
						|
      self.prev_lead_status = False
 | 
						|
 |