You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							131 lines
						
					
					
						
							4.8 KiB
						
					
					
				
			
		
		
	
	
							131 lines
						
					
					
						
							4.8 KiB
						
					
					
				| #
 | |
| # Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren,
 | |
| # Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor,
 | |
| # Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan,
 | |
| # Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl
 | |
| #
 | |
| # This file is part of acados.
 | |
| #
 | |
| # The 2-Clause BSD License
 | |
| #
 | |
| # Redistribution and use in source and binary forms, with or without
 | |
| # modification, are permitted provided that the following conditions are met:
 | |
| #
 | |
| # 1. Redistributions of source code must retain the above copyright notice,
 | |
| # this list of conditions and the following disclaimer.
 | |
| #
 | |
| # 2. Redistributions in binary form must reproduce the above copyright notice,
 | |
| # this list of conditions and the following disclaimer in the documentation
 | |
| # and/or other materials provided with the distribution.
 | |
| #
 | |
| # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
| # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
| # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
| # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 | |
| # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
| # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
| # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | |
| # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | |
| # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
| # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
| # POSSIBILITY OF SUCH DAMAGE.;
 | |
| #
 | |
| 
 | |
| import os
 | |
| from casadi import *
 | |
| from .utils import ALLOWED_CASADI_VERSIONS, is_empty, casadi_version_warning
 | |
| 
 | |
| def generate_c_code_gnsf( model, opts ):
 | |
| 
 | |
|     casadi_version = CasadiMeta.version()
 | |
|     casadi_opts = dict(mex=False, casadi_int='int', casadi_real='double')
 | |
|     if casadi_version not in (ALLOWED_CASADI_VERSIONS):
 | |
|         casadi_version_warning(casadi_version)
 | |
| 
 | |
|     model_name = model.name
 | |
|     code_export_dir = opts["code_export_directory"]
 | |
| 
 | |
|     # set up directory
 | |
|     if not os.path.exists(code_export_dir):
 | |
|         os.makedirs(code_export_dir)
 | |
| 
 | |
|     cwd = os.getcwd()
 | |
|     os.chdir(code_export_dir)
 | |
|     model_dir = model_name + '_model'
 | |
|     if not os.path.exists(model_dir):
 | |
|         os.mkdir(model_dir)
 | |
|     model_dir_location = os.path.join('.', model_dir)
 | |
|     os.chdir(model_dir_location)
 | |
| 
 | |
|     # obtain gnsf dimensions
 | |
|     get_matrices_fun = model.get_matrices_fun
 | |
|     phi_fun = model.phi_fun
 | |
| 
 | |
|     size_gnsf_A = get_matrices_fun.size_out(0)
 | |
|     gnsf_nx1 = size_gnsf_A[1]
 | |
|     gnsf_nz1 = size_gnsf_A[0] - size_gnsf_A[1]
 | |
|     gnsf_nuhat = max(phi_fun.size_in(1))
 | |
|     gnsf_ny = max(phi_fun.size_in(0))
 | |
|     gnsf_nout = max(phi_fun.size_out(0))
 | |
| 
 | |
|     # set up expressions
 | |
|     # if the model uses MX because of cost/constraints
 | |
|     # the DAE can be exported as SX -> detect GNSF in Matlab
 | |
|     # -> evaluated SX GNSF functions with MX.
 | |
|     u = model.u
 | |
| 
 | |
|     if isinstance(u, casadi.MX):
 | |
|         symbol = MX.sym
 | |
|     else:
 | |
|         symbol = SX.sym
 | |
| 
 | |
|     y = symbol("y", gnsf_ny, 1)
 | |
|     uhat = symbol("uhat", gnsf_nuhat, 1)
 | |
|     p = model.p
 | |
|     x1 = symbol("gnsf_x1", gnsf_nx1, 1)
 | |
|     x1dot = symbol("gnsf_x1dot", gnsf_nx1, 1)
 | |
|     z1 = symbol("gnsf_z1", gnsf_nz1, 1)
 | |
|     dummy = symbol("gnsf_dummy", 1, 1)
 | |
|     empty_var = symbol("gnsf_empty_var", 0, 0)
 | |
| 
 | |
|     ## generate C code
 | |
|     fun_name = model_name + '_gnsf_phi_fun'
 | |
|     phi_fun_ = Function(fun_name, [y, uhat, p], [phi_fun(y, uhat, p)])
 | |
|     phi_fun_.generate(fun_name, casadi_opts)
 | |
| 
 | |
|     fun_name = model_name + '_gnsf_phi_fun_jac_y'
 | |
|     phi_fun_jac_y = model.phi_fun_jac_y
 | |
|     phi_fun_jac_y_ = Function(fun_name, [y, uhat, p], phi_fun_jac_y(y, uhat, p))
 | |
|     phi_fun_jac_y_.generate(fun_name, casadi_opts)
 | |
| 
 | |
|     fun_name = model_name + '_gnsf_phi_jac_y_uhat'
 | |
|     phi_jac_y_uhat = model.phi_jac_y_uhat
 | |
|     phi_jac_y_uhat_ = Function(fun_name, [y, uhat, p], phi_jac_y_uhat(y, uhat, p))
 | |
|     phi_jac_y_uhat_.generate(fun_name, casadi_opts)
 | |
| 
 | |
|     fun_name = model_name + '_gnsf_f_lo_fun_jac_x1k1uz'
 | |
|     f_lo_fun_jac_x1k1uz = model.f_lo_fun_jac_x1k1uz
 | |
|     f_lo_fun_jac_x1k1uz_eval = f_lo_fun_jac_x1k1uz(x1, x1dot, z1, u, p)
 | |
| 
 | |
|     # avoid codegeneration issue
 | |
|     if not isinstance(f_lo_fun_jac_x1k1uz_eval, tuple) and is_empty(f_lo_fun_jac_x1k1uz_eval):
 | |
|         f_lo_fun_jac_x1k1uz_eval = [empty_var]
 | |
| 
 | |
|     f_lo_fun_jac_x1k1uz_ = Function(fun_name, [x1, x1dot, z1, u, p],
 | |
|                  f_lo_fun_jac_x1k1uz_eval)
 | |
|     f_lo_fun_jac_x1k1uz_.generate(fun_name, casadi_opts)
 | |
| 
 | |
|     fun_name = model_name + '_gnsf_get_matrices_fun'
 | |
|     get_matrices_fun_ = Function(fun_name, [dummy], get_matrices_fun(1))
 | |
|     get_matrices_fun_.generate(fun_name, casadi_opts)
 | |
| 
 | |
|     # remove fields for json dump
 | |
|     del model.phi_fun
 | |
|     del model.phi_fun_jac_y
 | |
|     del model.phi_jac_y_uhat
 | |
|     del model.f_lo_fun_jac_x1k1uz
 | |
|     del model.get_matrices_fun
 | |
| 
 | |
|     os.chdir(cwd)
 | |
| 
 | |
|     return
 | |
| 
 |