You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							52 lines
						
					
					
						
							1.4 KiB
						
					
					
				
			
		
		
	
	
							52 lines
						
					
					
						
							1.4 KiB
						
					
					
				#!/usr/bin/env python3
 | 
						|
# type: ignore
 | 
						|
import random
 | 
						|
from collections import defaultdict
 | 
						|
 | 
						|
from tqdm import tqdm
 | 
						|
 | 
						|
from selfdrive.car.fw_versions import match_fw_to_car_fuzzy
 | 
						|
from selfdrive.car.toyota.values import FW_VERSIONS as TOYOTA_FW_VERSIONS
 | 
						|
from selfdrive.car.honda.values import FW_VERSIONS as HONDA_FW_VERSIONS
 | 
						|
from selfdrive.car.hyundai.values import FW_VERSIONS as HYUNDAI_FW_VERSIONS
 | 
						|
from selfdrive.car.volkswagen.values import FW_VERSIONS as VW_FW_VERSIONS
 | 
						|
 | 
						|
 | 
						|
FWS = {}
 | 
						|
FWS.update(TOYOTA_FW_VERSIONS)
 | 
						|
FWS.update(HONDA_FW_VERSIONS)
 | 
						|
FWS.update(HYUNDAI_FW_VERSIONS)
 | 
						|
FWS.update(VW_FW_VERSIONS)
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
  total = 0
 | 
						|
  match = 0
 | 
						|
  wrong_match = 0
 | 
						|
  confusions = defaultdict(set)
 | 
						|
 | 
						|
  for _ in tqdm(range(1000)):
 | 
						|
    for candidate, fws in FWS.items():
 | 
						|
      fw_dict = {}
 | 
						|
      for (_, addr, subaddr), fw_list in fws.items():
 | 
						|
        fw_dict[(addr, subaddr)] = [random.choice(fw_list)]
 | 
						|
 | 
						|
      matches = match_fw_to_car_fuzzy(fw_dict, log=False, exclude=candidate)
 | 
						|
 | 
						|
      total += 1
 | 
						|
      if len(matches) == 1:
 | 
						|
        if list(matches)[0] == candidate:
 | 
						|
          match += 1
 | 
						|
        else:
 | 
						|
          confusions[candidate] |= matches
 | 
						|
          wrong_match += 1
 | 
						|
 | 
						|
  print()
 | 
						|
  for candidate, wrong_matches in sorted(confusions.items()):
 | 
						|
    print(candidate, wrong_matches)
 | 
						|
 | 
						|
  print()
 | 
						|
  print(f"Total fuzz cases: {total}")
 | 
						|
  print(f"Correct matches:  {match}")
 | 
						|
  print(f"Wrong matches:    {wrong_match}")
 | 
						|
 | 
						|
 | 
						|
 |